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The problem of sampled-data (SD) based adaptive linear quadratic (LQ) optimal control is
considered for linear stochastic continuous-time systems with unknown parameters and dis-

turbances. To overcome the difficulties caused by the unknown parameters and incomplete-
ness of the state information, and to probe into the influence of sample size on system
performance, a cost-biased parameter estimator and an adaptive control design method are

presented. Under the assumption that the unknown parameter belongs to a known finite
set, some sufficient conditions ensuring the convergence of the parameter estimate are
obtained. It is shown that when the sample step size is small, the SD-based adaptive control

is LQ optimal for the corresponding discretized system, and sub-optimal compared with that
of the case where the parameter is known and the information is complete.

1. Introduction

Practically, many control systems that are implemented
today are based on sampled-data (SD) control (Åström
and Wittenmark 2002), so the SD-based control
problem has received considerable attention. For such
systems, the available information for control design
is the measurement of the system state at the sample
time instance rather than the complete state process.
Some fundamental and elegant results on SD-based
control systems have been obtained on controllability
and observability (Fúster 1991), stabilization (Nešić
et al. 1999, Ishii and Francis 2003), the H1 problem
(Toivonen and Sågfors 1997, Bamieh and Pearson
1992), robust and adaptive control (Zhang et al. 1989,
Ortega and Kreisselmeier 1990, Hu and Hollot 1993,
Ilchmann and Townley 1999) and optimal control
(Qiu and Chen 1994, Yao and Zhang 2003). Among
others, the most problems of concern are related to the
adaptive control and optimal control. In the adaptive

control case, the systems are with unknown parameters

or uncertainties, and the works are mainly devoted to

SD-based control design and stabilization analysis of

the closed-loop systems (Zhang et al. 1989, Ortega and

Kreisselmeier 1990, Hu and Hollot 1993, Ilchmann

and Townley 1999). As for the SD-based optimal

control, the works mainly focus on the case where the

parameters are known and the system has no distur-

bance (Qiu and Chen 1994, Yao and Zhang 2003,

Tan et al. 2005). For instance, Yao and Zhang (2003)

investigated the optimality of the SD-based LQ control

for linear stochastic continuous-time systems with

known parameters; Tan et al. (2005) presented an

SD-based adaptive LQ control design procedure for

systems with unknown Markov jump parameters and

without disturbance, and studied the stability and

index optimality of the closed-loop systems. It is

shown that when the sample step size is small, the

SD-based adaptive LQ control is suboptimal.

Although some work has been done with the SD-based

system, to the authors’ knowledge, there is no

SD-based adaptive LQ optimal control result about*Corresponding author. Email: jif@iss.ac.cn
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7 the invariant linear systems with unknown parameters

and Brownian motion noise yet.
In this paper, we would like to study the SD-based

adaptive LQ optimal control problem for linear

stochastic continuous-time systems with both unknown

parameters and disturbances. Similar to Kumar (1983),

we assume that the unknown parameter belongs to a

known finite set. In this SD-based control case, it is

very difficult and complicated to construct an adaptive

LQ optimal control due to the existence of the unknown

parameters and disturbances, and incomplete state

information, since the conventional full-data based

optimal (adaptive) control (see Caines and Zhang

1995, Duncan et al. 1999, Chen et al. 1996) is not

feasible. Thus, some problems emerge naturally, such

as, whether or not there exists an SD-based adaptive

LQ optimal control when the system is with unknown

parameters and disturbances, how to construct an

SD-based adaptive optimal control, and what is the

cost difference between the full-data-based optimal

control and the SD-based optimal control. To answer

these questions, we will first estimate the unknown para-

meters by using a cost-biased least square algorithm

inspired by Kumar (1983), and then, design an SD-

based adaptive control according to the certainty

equivalent principle. It is shown that when the sample

step size is small, the SD-based adaptive control is LQ

optimal for the corresponding discretized system, and

sub-optimal compared with that of the case where the

parameter is known and the complete information

rather than only the sampled-data of the state process

of the continuous-time system is available for control

design.
The remainder of this paper is organized as follows:

in x 2, the control system to be studied is described,

and some assumptions, notations and preliminary

results are given. In x 3, a parameter estimation

method is presented, and an SD-based adaptive LQ

control is designed. Besides, the convergence property

of the parameter estimate is analysed. Section 4 is

concerned with the stability analysis of the closed-loop

system with the SD-based adaptive control. Section 5

studies the optimality of the SD-based adaptive control.

Section 6 gives some concluding remarks.

2. Problem formulation and preliminary results

Consider a stochastic linear continuous-time system of

the form

dxt ¼ Að�0Þxt dtþ Bð�0Þut dtþ Cð�0ÞdWt, ð1Þ

where �0 2 � is the unknown system parameter to be
estimated for control design, � is a known finite set,
xt 2 R

n is the state vector, ut 2 R
m is the control

vector and Wt 2 R
l is a standard Brownian motion with

EWt ¼ 0, EWtW
T
t ¼ tI: ð2Þ

WT denotes the transpose of W, E( � ) denotes the
mathematical expectation. The initial value x0 is with
normal distribution and Ekx0k

2 < 1. k � k is the
Euclid norm of R

n and the corresponding induced
matrix norm. I is an identity matrix with appropriate
dimension.

For expression simplicity, in the sequel, we
will denote Að�0Þ, Bð�0Þ and Cð�0Þ by A0, B0 and C0,
respectively.

The problem we would like to solve is to design
a sampled-data (SD) based adaptive control for the
system (1) to minimize the following quadratic cost
function

JðuÞ ¼ lim sup
t!1

1

t

Z t

0

xTs Qxs þ uTs Rus
� �

ds, ð3Þ

where R>0, Q� 0, and u, fut, t � 0g with ut 2
�fxs, s � tg and �fxs, s � tg being the �-algebra
generated by fxs, s � tg.

Suppose that the sample step is h, and let

t 0 ¼
t

h

j k
h, ð4Þ

where bxc denotes the maximal integer less than or
equal to x. Then for a continuous-time system of the
form

dxt ¼ Að�Þxt dtþ Bð�Þut dtþ Cð�ÞdWt ð5Þ

with SD-based control

ut ¼ ut 0 , t 2 ½t 0, t 0 þ hÞ, ð6Þ

we have

xðkþ1Þh ¼ �Að�Þxkh þ �Bð�Þukh þWðkþ1Þhð�Þ, ð7Þ

where xkh ¼ xðkhÞ, and

�Að�Þ ¼ eAð�Þh, �Bð�Þ ¼

Z h

0

eAð�Þs dsBð�Þ, ð8Þ

Wðkþ1Þhð�Þ ¼

Z ðkþ1Þh

kh

eAð�Þððkþ1Þh�sÞCð�ÞdWs: ð9Þ

Sampled-data based control of stochastic systems 1677
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7 For the convenience of citation, we introduce the
following assumptions.

Assumption A1: ðA0,C0Þ is controllable.

Assumption A2: For all � 2 �, ðAð�Þ,Bð�Þ,Q1=2Þ

is controllable and observable.

Assumption A3: The sample step h < �=jIm�j,
8� 2 � ðAð�ÞÞ and � 2 � where Im� denotes the
imaginary part of �, and �ðAð�ÞÞ denotes the eigenvalue
set of A(�). When Im� ¼ 0, let �=jIm�j ¼ 1.

Assumption A1 is to guarantee some excitation
degree of the disturbance to system state process in
order to ensure the convergence of parameter estimate
(Chen et al. 1996). Many different assumptions on the
noise gain matrix can be found in the literature. For
instance, it is assumed to be of full rank in Kumar
(1983) and Caines and Chen (1985), or spanðB0Þ �

spanðC0Þ in Chen (1995) and Gao and Pasik-Duncan
(1997).
Assumption A2 is standard for the LQ control

problem. It ensures that the following continuous
Riccati equation has a unique positive definite solution
P(�) for every � 2 �:

ATð�ÞPð�Þ þ Pð�ÞAð�Þ � Pð�ÞBð�ÞR�1BTð�ÞPð�Þ þQ ¼ 0:

ð10Þ

Assumption A3 together with Assumption A2 guaran-
tees the controllability of ð �Að�Þ, �Bð�ÞÞ and the observabil-
ity of ð �Að�Þ,Q1=2Þ, and hence, ensures that the following
discrete Riccati equation has a unique positive definite
solution �Pð�Þ for every � 2 � (Sontag 1998):

�Pð�Þ ¼ �ATð�Þ
h
�Pð�Þ � �Pð�Þ �Bð�Þ �BTð�Þ �Pð�Þ �Bð�Þ þ R

� ��1

� �BTð�Þ �Pð�Þ
i
�Að�Þ þQ: ð11Þ

Let

Kð�Þ ¼ �R�1BTð�ÞPð�Þ,

�Kð�Þ ¼ �½ �BTð�Þ �Pð�Þ �Bð�Þ þ R��1 �BTð�Þ �Pð�Þ �Að�Þ: ð12Þ

Then for any given �, under Assumptions A2 and A3,
from Bertsekas (1976), Kumar (1983) and Sontag
(1998) we have the following.

(i) (11) can be rewritten as

�Pð�Þ ¼ ½ �Að�Þ þ �Bð�Þ �Kð�Þ�T �Pð�Þ½ �Að�Þ þ �Bð�Þ �Kð�Þ�

þ �KTð�ÞR �Kð�Þ þQ ð13Þ

(ii) �Að�Þ þ �Bð�Þ �Kð�Þ is stable in the sense that all eigen-

values of �Að�Þ þ �Bð�Þ �Kð�Þ are in the open unit disk
of the complex plane.

(iii) Within the class of matrices K such that
�Að�Þ þ �Bð�ÞK is stable, �Kð�Þ is the unique feedback
gain to minimize the cost function

�Jð�, uÞ ¼ lim
k!1

1

k

Xk�1

i¼0

xTihð�ÞQxihð�Þ þ uTihð�ÞRuihð�Þ
� �

, ð14Þ

where u ¼ fuih, i ¼ 0, 1, . . . , g with uih 2 �fxjh, j ¼ 0,
1, . . . , ig and �fxjh, j ¼ 0, 1, . . . , ig being the �-algebra
generated by fxjh, j ¼ 0, 1, . . . , ig.
(iv) Let

�Jð�Þ ¼ min
u

�Jð�, uÞ; ð15Þ

then

�Jð�Þ ¼ tr

Z h

0

CTð�ÞeA
Tð�Þs �Pð�ÞeAð�ÞsCð�Þds

� �
, ð16Þ

where we have used

E W
T

ðkþ1Þhð�Þ
�Pð�ÞWðkþ1Þhð�Þ

h i
¼ tr

Z h

0

CTð�ÞeA
Tð�Þs �Pð�ÞeAð�Þs � Cð�Þds

� �
: ð17Þ

For system (1), it is well-known that when the parameter
�0, i.e., ðA0,B0Þ, is known a priori, and ðA0,B0,Q

1=2Þ

is controllable and observable, the algebraic Riccati
equation

AT
0P0 þ P0A0 � P0B0R

�1BT
0P0 þQ ¼ 0 ð18Þ

has a unique positive definite solution P0, and the linear
feedback

u�t ¼ �R�1BT
0P0xt ð19Þ

is such that the quadratic cost function (3) reaches
its minimal, i.e.,

Jðu�Þ ¼ min
u

JðuÞ ¼ trðCT
0P0C0Þ: ð20Þ

3. Parameter estimation and SD-based adaptive

control design

To design an adaptive control law for system (1), it is
natural to choose the well-known least square method
to estimate the unknown parameters. However, if the

1678 S. Tan and J. F. Zhang
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7 least square method is used alone, then it is sometimes
difficult to get an optimal adaptive control.
To see this, let us consider a one-dimension

system (1). Suppose its parameter ðA,B,CÞ is unknown,
but is known to be in the set fð�2 ln 2, � 4 ln 2, 1Þ,
ð0, 2, 1Þg. The cost function is of the form (3) with
Q¼ 1 and R¼ 12.
Here we choose sample step size h¼ 0.5. Then, by

(7)–(9) we have

�Að1Þ ¼ 1=2, �Bð1Þ ¼ �1, �Að2Þ ¼ 1, �Bð2Þ ¼ 1,

W0:5ðkþ1Þð1Þ ¼

Z 0:5ðkþ1Þ

0:5k

2�ðkþ1Þþ2sdWs,

W0:5ðkþ1Þð2Þ ¼

Z 0:5ðkþ1Þ

0:5k

dWs:

From Kumar (1983), the optimal control law of the
corresponding discrete-time system is

ukh ¼ �Kð�0Þxkh ¼

2
ffiffiffi
7

p
� 5

6
xkh, if �0 ¼ 1, i.e. ð �A, �BÞ

¼ ð12 , � 1Þ;

�
1

4
xkh, if �0 ¼ 2, i.e. ð �A, �BÞ

¼ ð1, 1Þ,

8>>>>>>><>>>>>>>:
ð21Þ

where t 2 ð½kh, ðkþ 1Þh�Þ and �Kð�0Þ is given by (12).
Since we do not know the true value of ðA,B,CÞ,

at each sample time instant t¼ kh we will use the least
square method to get the estimate �̂kh of the true value
�0 based on the sampled-data ðx0, u0,xh, uh, . . . , xkhÞ,
and then, use the estimate to design an adaptive control
law ukh. To this end, let

e1ðkÞ ¼
Xk�1

i¼0

xðiþ1Þh � �Að1Þxih � �Bð1Þuih
� �2

¼
Xk�1

i¼0

xðiþ1Þh �
1
2 xih þ uih

� �2
,

e2ðkÞ ¼
Xk�1

i¼0

xðiþ1Þh � �Að2Þxih � �Bð2Þuih
� �2

¼
Xk�1

i¼0

xðiþ1Þh � xih � uih
� �2

:

If e1ðkÞ � e2ðkÞ, then by the least square method,
ð �Að1Þ, �Bð1ÞÞ ¼ ð12 , � 1Þ is chosen to be the estimate of
the true parameter (A,B), or equivalently, �̂kh ¼ 1.
Otherwise, ð �Að2Þ, �Bð2ÞÞ ¼ ð1, 1Þ is chosen to be the

estimate, or �̂kh ¼ 2. Therefore, by (21) the optimal
adaptive control is

ukh ¼

2
ffiffiffi
7

p
� 5

6
xkh, if e1ðkÞ � e2ðkÞ ;

�
1

4
xkh, otherwise.

8><>:
Note that

Xk�1

i¼0

xðiþ1Þh �
1

2
xih þ uih

� �2

>
Xk�1

i¼0

xðiþ1Þh � xih � uih
� �2

) ukh ¼ �
1

4
xkh

) xðkþ1Þh �
1

2
xkh þ ukh

� �2

¼ xðkþ1Þh � xkh � ukh
� �2

)
Xk
i¼0

xðiþ1Þh �
1

2
xih þ uih

� �2

>
Xk
i¼0

xðiþ1Þh � xih � uih
� �2

) uðkþ1Þh ¼ �
1

4
xðkþ1Þh

) � � �

) uKh ¼ �
1

4
xKh, for all K � k: ð22Þ

We can see that if at some time instant t¼ kh, the
parameter estimate is �̂kh ¼ 2, then it will remain
�̂kh ¼ 2 thereafter, and the adaptive control law will
keep being uKh ¼ � 1

4 xKh for all K � k.
In fact, this may happen in a comparatively large

probability which partly depends on the sample size h.
Suppose that the true parameter is ð�2 ln 2, � 4 ln 2Þ
and the initial values are x0¼ 1 and u0¼ 0. Then,
we have

uh ¼�
1

4
xh , xh �

1

2
x0 þ u0

� �2

> ðxh � x0 � u0Þ
2

,

Z 0:5

0

22s�1 dWs

� �2

>

Z 0:5

0

22s�1 dWs �
1

2

� �2

,

Z 0:5

0

22s dWs

� �2

>

Z 0:5

0

22s dWs � 1

� �2

,

Z 0:5

0

22s dWs >
1

2
: ð23Þ

Since W ¼
R 0:5
0 22s dWs obeys the norm distribution

Nð0, 3=4 ln 2Þ, W > 1
2 occurs with probability 0.3154.

Thus, the adaptive control law will stick at the
‘‘worse’’ control law ukh ¼ � 1

4 xkh at least with probabil-
ity 0.3154. In this case, the cost of the corresponding
discrete-time system is going far away from the optimal
value if the true value is �0 ¼ 1. Precisely, by (16), the

Sampled-data based control of stochastic systems 1679
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7 optimal cost of the corresponding discrete-time system is
0.3494. However, by MatLab program, the cost under
adaptive control law fukh ¼ � 1

4 xkh, k ¼ 1, 2, . . .g
mostly falls into the interval (0.49, 0.51), which
is apparently larger than the optimal cost. Here due
to the existence of Brownian motion and the
limitation of sample step, the cost under adaptive
control law is random. Thinking roughly, the cost of
the SD-based system will also go far away from the
optimal value.
Actually, the least square algorithm has a natural

tendency to return estimates with larger optimal
cost. In a general way, suppose �̂kh is an estimate of
�0 at t¼ kh given by the least square method, and
ukh ¼ �Kð�̂khÞxkh is the adaptive control where �Kð�̂khÞ is
defined by (12) with � ¼ �̂kh. Then, just as Campi and
Kumar (1998) pointed out, what the least square algo-
rithm returns is the most possible closed-loop system,
and the behaviour of the true system ð �Að�0Þ, �Bð�0ÞÞ
with the loop closed by adaptive control law
ukh ¼ �Kð�̂khÞxkh is the same closed-loop system with
estimate ð �Að�̂khÞ, �Bð�̂khÞÞ, in other words, their closed-
loop gains are the same and equal to

�Að�0Þ þ �Bð�0Þ �Kð�̂khÞ ¼ �Að�̂khÞ þ �Bð�̂khÞ �Kð�̂khÞ:

This means that the cost of running the true system is
the same as that of the estimated system under feedback
�Kð�̂khÞ. Meanwhile, �Kð�̂khÞxkh is apparently not optimal
for the true system, but optimal for the system
ð �Að�̂khÞ, �Bð�̂khÞÞ. Thus,

�Jð�̂khÞ � �Jð�0Þ:

To overcome this nature tendency, similar to Kumar
(1983) we will adopt a cost-biased method to estimate
the unknown parameter and design SD-based adaptive
control.

3.1 Parameter estimation and SD-based adaptive
control design

This subsection is devoted to designing an SD-based
adaptive control. We first use a cost-biased estimator
to estimate the unknown parameter �0, and then, use
the certainty equivalent principle to construct the
desired adaptive control.
Similar to Kumar (1983), choose an arbitrary

deterministic function ’(k) such that

’ðkÞ > 0, lim
k!1

’ðkÞ ¼ þ1, lim
k!1

’ðkÞ

ln k
¼ 0: ð24Þ

At each time t¼ kh, estimate the unknown parameter �0
as follows:

�̂kh ¼
argmin

�2�
½’ðkÞ �Jð�Þ þ Vkð�Þ�, k is even,

�̂ðk�1Þh, k is odd,

8<: ð25Þ

where �Jð�Þ is given by (16), and

Vkð�Þ ¼
Xk�1

i¼0

xðiþ1Þh � �Að�Þxih � �Bð�Þuih
� �T

� xðiþ1Þh � �Að�Þxih � �Bð�Þuih
� �

: ð26Þ

Define the SD-based adaptive control as

ut ¼ ut 0 , t 2 ½t 0, t 0 þ hÞ, t 0 ¼
t

h

j k
h; ð27Þ

ukh ¼ �Kð�̂khÞxkh, ð28Þ

where �Kð�̂khÞ is given by (12) and (25), or

�Kð�̂khÞ ¼ �½ �BTð�̂khÞ �Pð�̂khÞ �Bð�̂khÞ þ R��1

� �BTð�̂khÞ �Pð�̂khÞ �Að�̂khÞ: ð29Þ

3.2 Convergence analysis of parameter estimates

Let

Dkð�Þ ¼ ’k �Jð�Þ þ Vkð�Þ, ð30Þ

�ihð�Þ ¼ ½ �A0 � �Að�Þ�xih þ ½ �B0 � �Bð�Þ�uih, ð31Þ

�0ð�Þ ¼ 1, �kð�Þ ¼ 1þ
Xk�1

i¼1

�T
ihð�Þ�ihð�Þ, ð32Þ

where �A0 ¼ �Að�0Þ, �B0 ¼ �Bð�0Þ, and �Jð�Þ is given by (15)
and (16). Then, by (15) we have

Vkð�Þ ¼ �kð�Þ þ 2
Xk�1

i¼0

�T
ihð�ÞWðiþ1Þhð�0Þ

þ
Xk�1

i¼0

W
T

ðiþ1Þhð�0ÞWðiþ1Þhð�0Þ: ð33Þ

Before going further, we need the following lemmas.

Lemma 1: If �� is a limit point of f�̂khg
1
k¼1 almost surely,

and the sample step size h is such that n�2
h � 1, then

�Jð��Þ � �Jð�0Þ, where �Jð�Þ is defined by (15), and

�h ¼

Z h

0

eA0sC0ðe
A0sC0Þ

T ds

�����
�����
1=2

: ð34Þ

1680 S. Tan and J. F. Zhang
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7 The proof is given in Appendix A.

Remark 1: To ensure n�2
h � 1, by (34) it suffices to

choose h such that

h � min 1,
1ffiffiffi

n
p

kC0k
2e2kA0k

� �
:

In fact, we know that, under Assumption A3 and the
condition n�2

h � 1, h should belong to set

H ¼ h :h < min
� 2 �ðAð�ÞÞ

� 2 �

1,
1ffiffiffi

n
p

kC0k
2e2kA0k

,
�

jIm�j

� �8>>><>>>:
9>>>=>>>;:

ð35Þ

Lemma 2: Under Assumptions A1–A3 and the condition
n�2

h � 1, if for a �� 2 �, the parameter estimate �̂kh given
by (25) satisfies

lim sup
k!1

1

ln k

Xk�1

i¼0

1ð�̂ih ¼ ��Þ > 0 a:s:, ð36Þ

then

�A0 þ �B0
�Kð��Þ ¼ �Að��Þ þ �Bð��Þ �Kð��Þ, ð37Þ

where �A0 ¼ �Að�0Þ, �B0 ¼ �Bð�0Þ, and �Að�Þ, �Bð�Þ and �Kð�Þ
are given by (8) and (12), respectively.

The proof is given in Appendix A.
From Lemmas 1 and 2, and similar to the proof of

Theorem 8 in Kumar (1983), we can get the following
theorem.

Theorem 1: Suppose that Assumptions A1–A3 hold and
the sample step size h is such that n�2

h � 1, where �h
is defined by (34). Then, under the SD-based adaptive
control (24)–(28), the discretized closed-loop system

xðkþ1Þh ¼ ð �A0 þ �B0
�Kð�̂khÞÞxkh þWðkþ1Þhð�0Þ

of the linear continuous-time system (1) has the following
properties

lim
k!1

ðln kÞ�1
Xk�1

i¼0

1ð �Kð�̂ihÞ 6¼ �K0Þ ¼ 0 a:s:, ð38Þ

lim
k!1

ðln kÞ�1
Xk�1

i¼0

1ðuih 6¼ �K0xihÞ ¼ 0 a:s:, ð39Þ

where �K0 ¼ �Kð�0Þ is the optimal feedback gain defined by
(11) and (12) to minimize the quadratic cost function (14).

Remark 2: This theorem says that the feedback gain
�Kð�̂khÞ given by (24)–(28) converges in the sense of (38)
and (39) to the optimal feedback gain �Kð�0Þ of the
discritized system

xðkþ1Þh ¼ �A0xkh þ �B0ukh þWðkþ1Þhð�0Þ ð40Þ

with quadratic cost function (14).

4. Stability result

The purpose of this section is to analyse the stability
of the closed-loop system of the system (1) with the
SD-based adaptive control (24)–(28).

Theorem 2: Consider the system (1) with normal
distributed initial value x0 satisfying Ekx0k

2 < 1. Then,
under the conditions of Theorem 1 and the SD-based
adaptive control (24)–(28), we have

lim sup
t!1

1

t

Z t

0

kxsk
2 ds < 1 a:s:: ð41Þ

Proof: Substituting the SD-based adaptive control
(24)–(28) into (1), we get the following closed-loop
system:

dxt ¼ A0xt dtþ B0
�Kð�̂t 0 Þxt 0 dtþ C0 dWt

¼ A1xt 0 dtþ A0ðxt � xt 0 Þ dtþ C0 dWt, ð42Þ

where t 0 is defined by (4), and

A1 ¼ A0 þ B0
�Kð�̂t 0 Þ:

From (42) it follows that

xt � xt 0 ¼ A0

Z t

t 0
ðxs � xt 0 Þdsþ ðt� t 0ÞA1xt 0

þ C0ðWt �Wt 0 Þ, 8t 2 ½t 0, t 0 þ hÞ: ð43Þ

Hence,

kxt � xt 0 k � kA0k

Z t

t 0
kxs � xt 0 kdsþ hkA1kkxt 0 k

þ kC0ðWt �Wt 0 Þk,

and by the Gronwall lemma,

kxt � xt 0 k � hkA1kkxt 0 ke
kA0kh þ kC0ðWt �Wt 0 Þk

þ kA0k

Z t

t 0
ekA0kðt�sÞkC0ðWs �Wt 0 Þkds

� c1kxt 0 k þ c2ðtÞ, ð44Þ

Sampled-data based control of stochastic systems 1681
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7 where

c1 ¼ hekA0kh max�2� kA0 þ B0
�Kð�Þk,

c2ðtÞ ¼ kC0ðWt �Wt 0 Þk þ kA0ke
kA0kh

�
R t
t 0 kC0ðWs �Wt 0 Þkds:

8><>:
Therefore, we have

kxtk ¼ kxt 0 þ xt � xt 0 k � kxt 0 k þ kxt � xt 0 k

� ðc1 þ 1Þkxt 0 k þ c2ðtÞ: ð45Þ

Noting that kWt �Wt 0 k is independent, from the law
of large number it follows that

lim sup
t!1

1

t

Z t

0

kc2ðsÞk
2 ds ¼ E

Z h

0

kc2ðsÞk
2 ds ¼ Oðh2Þ:

ð46Þ

Hence, applying the ergodic theorem to kWkhð�0Þk
2n , by

Assumptions A1–A3, (38), and Theorem 12 of Kumar
(1983) we can obtain

lim sup
k!1

1

k

Xk�1

i¼0

kxihk
p < 1 a:s:, p ¼ 2, 4, ð47Þ

which together with (45) and (46) renders

lim sup
t!1

1

t

Z t

0

kxsk
2 ds

¼ lim sup
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

kxsk
2 ds

� lim sup
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

2ðc1 þ 1Þ2kxihk
2 þ 2c22ðsÞ

	 

ds

¼ lim sup
k!1

2ðc1 þ 1Þ2
1

k

Xk�1

i¼0

kxihk
2 þOðh2Þ < 1:

Thus, (41) is true.

5. Optimality results

In this section, we would like to study the optimality of
the SD-based adaptive control. To do so, we need the
following lemma.

Lemma 3: Let P(�) be the positive definite solution of the
continuous Riccati equation (10), and �Pð�Þ be the positive
definite solution of the discrete Riccati equation (11) with
�Að�Þ and �Bð�Þ given by (8). Then, under Assumptions A2
and A3, we have

lim
h!0

h �Pð�Þ ¼ Pð�Þ, lim
h!0

�Kð�Þ ¼ Kð�Þ, ð48Þ

where the feedback gains K(�) and �Kð�Þ are defined
by (12).

Proof: From (11) it follows that

�Pð�Þ ¼ ð �Að�Þ � Iþ IÞT½ �Pð�Þ � �Pð�Þ �Bð�Þð �BTð�Þ �Pð�Þ �Bð�Þ

þ RÞ�1 �BTð�Þ �Pð�Þ� ð �Að�Þ � Iþ IÞ þQ

¼ ð �Að�Þ � IÞT �Pð�Þð �Að�Þ � IÞ þ ð �Að�Þ � IÞT �Pð�Þ

þ �Pð�Þð �Að�Þ � IÞ þ �Pð�Þ

� �ATð�Þ �Pð�Þ �Bð�Þ �BTð�Þ �Pð�Þ �Bð�Þ þ R
� ��1

� �BTð�Þ �Pð�Þ �Að�Þ þQ,

or equivalently,

0 ¼
ð �Að�Þ � IÞT

h
ðh �Pð�ÞÞ þ h �Pð�Þ

ð �Að�Þ � IÞ

h
þQ

þ
ð �Að�Þ � IÞT

h
ðh �Pð�ÞÞð �Að�Þ � IÞ

� �ATð�Þðh �Pð�ÞÞ
�Bð�Þ

h

�BTð�Þ

h
ðh �Pð�ÞÞ �Bð�Þ þ R

� ��1

�
�BTð�Þ

h
ðh �Pð�ÞÞ �Að�Þ: ð49Þ

Denote Phð�Þ ¼ h �Pð�Þ, then, (49) can be rewritten as

0 ¼
ð �Að�Þ � IÞT

h
Phð�Þ þ Phð�Þ

ð �Að�Þ � IÞ

h
þQ

þ
ð �Að�Þ � IÞT

h
Phð�Þð �Að�Þ � IÞ

� �ATð�ÞPhð�Þ
�Bð�Þ

h

�BTð�Þ

h
Phð�Þ �Bð�Þ þ R

� ��1

�
�BTð�Þ

h
Phð�Þ �Að�Þ:

By (8) we know that �Að�Þ, �Bð�Þ, ð �Að�Þ � IÞ=h and ð �Bð�ÞÞ=h
are continuous with respect to h 2 ½0, 1�, and

lim
h!0

�Að�Þ ¼ lim
h!0

eAð�Þh ¼ I,

lim
h!0

�Bð�Þ ¼ lim
h!0

Z h

0

eAð�ÞtdtBð�Þ ¼ 0,

lim
h!0

�Að�Þ � I

h
¼ lim

h!0
Að�Þ þ

X1
n¼2

Að�Þnhn�1

n!

 !
¼ Að�Þ,

lim
h!0

�Bð�Þ

h
¼ lim

h!0

1

h

Z h

0

eAð�ÞtdtBð�Þ

¼ lim
h!0

Bð�Þ þ
P1
n¼1

Anð�Þhn

ðnþ 1Þ!
Bð�Þ

� �
¼ Bð�Þ:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ð50Þ
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7 By Assumption A2, the continuous Riccati equation (10)
has a unique positive definite solution P(�). Notice that
the solution of the algebra Riccati equation is continu-
ously dependent on the coefficient matrices. Then, it
follows from (50) that

lim
h!0

Phð�Þ ¼ Pð�Þ,

which together with (12) (the definitions of K(�) and
�Kð�Þ) gives

�Kð�Þ ¼ �
�BTð�Þ

h
Phð�Þ �Bð�Þ þ R

� ��1
BTð�Þ

h
Phð�Þ �Að�Þ

¼ �R�1Bð�ÞPð�ÞðIþ oð1ÞÞ:

Thus, (48) is true. œ

Remark 3: Lemma 3 shows that when the sample step
size h is small, the positive definite solution �Pð�Þ of
discrete Riccati equation (11) is approximately equal
to ð1=hÞPð�Þ. This means the smaller the h is, the larger
the �Pð�Þ is. On the contrary, when h is small, so is the
difference between the two optimal feedback gains of
the discretized system (40) and the continuous-time
system (1). And by Theorem 1, as h ! 0, the feedback
gain �Kð�̂khÞ of the SD-based adaptive control (24)–(28)
approaches to the optimal feedback gain K0 of the
system (1) in the sense of (38) and (39).
We now give a simple example to illustrate (48).

Example 1: Consider the system (1) with n ¼ m ¼ l ¼ 1
and cost function (3). Let A¼ 1, B¼ 1, Q¼ 1 and R¼ 1.
Then, the continuous Riccati equation (10) becomes

�P2 þ 2Pþ 1 ¼ 0,

which has a unique positive solution

P ¼
ffiffiffi
2

p
þ 1: ð51Þ

For a given sample step size h, the parameters of the
corresponding discretized system (11) are �A ¼ eh,
�B ¼ eh � 1, respectively. Hence, the discrete Riccati
equation (11) is

�P ¼ e2h �P� �P2ðeh � 1Þ2 ðeh � 1Þ2 �Pþ 1
� ��1

h i
þ 1,

which has a unique positive solution

�P ¼
eh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2h þ 1

p

eh � 1
: ð52Þ

This together with (12) gives

K ¼ �ð
ffiffiffi
2

p
þ 1Þ, �K ¼ �

e2h þ eh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2h þ 1

p

ðeh � 1Þðeh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2h þ 1

p
Þ þ 1

:

Thus, when h is sufficiently small, we have

h �P ¼
ffiffiffi
2

p
þ 1þOðhÞ ¼ PþOðhÞ,

�K ¼ �ð
ffiffiffi
2

p
þ 1Þ þOðhÞ ¼ KþOðhÞ,

i.e., (48) holds.
With Lemma 3, similar to Kumar (1983), we can

prove Theorem 3.

Theorem 3: Under the condition of Theorem 2 and the
SD-based adaptive control (24)–(28), for the discretized
system

xðkþ1Þh ¼ �A0xkh þ �B0ukh þWðkþ1Þhð�0Þ ð53Þ

of the system (1), we have

lim
k!1

1

k

Xk�1

i¼0

ðxTihQxih þ uTihRuihÞ ¼
�Jð�0Þ

¼ tr CT
0P0C0

� �
þ oð1Þ a:s:, ð54Þ

where �Jð�0Þ is given by (15) and (16) with � ¼ �0, i.e.,

�Jð�0Þ ¼ tr

Z h

0

CT
0 e

AT
0
s �P0e

A0sC0ds

� �
: ð55Þ

Proof: From (13) we obtain

Qþ �KTð�̂khÞR �Kð�̂khÞ þ ½ �A0 þ �B0
�Kð�̂khÞ�

T

� �P0½ �A0 þ �B0
�Kð�̂khÞ�

¼ Qþ ½ �K0 þ ð �Kð�̂khÞ � �K0Þ�
TR½ �K0 þ ð �Kð�̂khÞ � �K0Þ�

þ ½ �A0 þ �B0
�K0 þ �B0ð �Kð�̂khÞ � �K0Þ�

T �P0½ �A0 þ �B0
�K0

þ �B0ð �Kð�̂khÞ � �K0Þ�

¼ �P0 þ ½ �Kð�̂khÞ � �K0�
TR½ �Kð�̂khÞ � �K0� þ ½ �Kð�̂khÞ

� �K0�
T �BT

0
�P0

�B0½ �Kð�̂khÞ � �K0�

þ ½ �Kð�̂khÞ � �K0�
TR �K0 þ ½ �Kð�̂khÞ � �K0�

T

� �BT
0
�P0½ �A0 þ �B0

�K0�

þ ð½ �Kð�̂khÞ � �K0�
TR �K0 þ ½ �Kð�̂khÞ � �K0�

T

� �BT
0
�P0½ �A0 þ �B0

�K0�Þ
T: ð56Þ

Sampled-data based control of stochastic systems 1683
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7 From the second equality of (12) we have

½ �BT
0
�P0

�B0 þ R� �K0 ¼ � �BT
0
�P0

�A0,

or equivalently,

R �K0 þ �BT
0
�P0

�A0 þ �BT
0
�P0

�B0
�K0 ¼ 0,

which leads to

½ �Kð�̂khÞ � �K0�
TR �K0 þ ½ �Kð�̂khÞ � �K0�

T �BT
0

� �P0½ �A0 þ �B0
�K0� ¼ 0:

This together with (56) gives

Qþ �KTð�̂khÞR �Kð�̂khÞ þ ½ �A0 þ �B0
�Kð�̂khÞ�

T

� �P0½ �A0 þ �B0
�Kð�̂khÞ�

¼ �P0 þ ½ �Kð�̂khÞ � �K0�
T
½Rþ �BT

0
�P0

�B0�½ �Kð�̂khÞ � �K0�: ð57Þ

Let

yðkþ1Þ ¼ xTkhQxkh þ uTkhRukh �
�Jð�0Þ þ xTðkþ1Þh

�P0xðkþ1Þh

� xTkh
�P0xkh � xTkh½

�Kð�̂khÞ � �K0�
T
½Rþ �BT

0
�P0

�B0�

� ½ �Kð�̂khÞ � �K0�xkh: ð58Þ

Then, substituting

xðkþ1Þh ¼ ½ �A0 þ �B0
�Kð�̂khÞ�xkh þWðkþ1Þhð�0Þ

and ukh ¼ �Kð�̂khÞxkh

into (58) and using (57) gives

ykþ1 ¼ W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ � �Jð�0Þ þ 2W

T

ðkþ1Þhð�0Þ

� �P0½ �A0 þ �B0
�Kð�̂khÞ�xkh: ð59Þ

By (55) and the definition of Wkhð�0Þ we have

E ½ykþ1jF kh� ¼ E ½W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ� � �Jð�0Þ ¼ 0:

Hence, fyk,F kg is a martingale difference sequence.

From (59) we have

E ½y2kþ1jF kh�

¼ E ½W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ � �Jð�0Þ�

2

þ 4xTkh½
�A0 þ �B0

�Kð�̂khÞ�
T �P0E



Wðkþ1Þhð�0Þ

� ½W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ � �Jð�0Þ�

�
þ 4xTkh½

�A0 þ �B0
�Kð�̂khÞ�

T �P0



E½Wðkþ1Þhð�0ÞW

T

ðkþ1Þhð�0Þ�
�

� �P0½ �A0 þ �B0
�Kð�̂khÞ�xkh

� aþ ckbkkxkhk þ 4c2�2
hkxkhk

2

� ðaþ ckbkÞ þ ð4c2�2
h þ ckbkÞkxkhk

2, ð60Þ

where �h is given by (34), and

a ¼ E ½W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ � �Jð�0Þ�

2,

b ¼ 4EfWðkþ1Þhð�0Þ½W
T

ðkþ1Þhð�0Þ
�P0Wðkþ1Þhð�0Þ � �Jð�0Þ�g,

c ¼ max
�2�

fk �P0½ �A0 þ �B0
�Kð�Þ�kg:

Similar to Kumar (1983), it can be shown that under
the SD-based adaptive control (24)–(28), the system
state xkh satisfies

X1
k¼1

k�2kxkhk
2 < 1 a:s: and lim

k!1
k�1kxkhk

2 ¼ 0 a:s:

ð61Þ

Hence, by (60) and the first inequality of (61), we have

X1
k¼1

k�2E ½y2kþ1jF kh� < 1 a:s:

From this, the convergence theorem of martingale differ-
ence sequence (Gong 1987), and the fact that fyk,F khg

is martingale difference sequence, it follows that

lim
k!1

1

k

Xk
i¼1

yi ¼ 0 a:s: ð62Þ

By (38) and (47) we have

lim sup
k!1

1

k

Xk�1

i¼0

xTih½
�Kð�̂ihÞ � �K0�

T
ðRþ �BT

0
�P0

�B0Þ½ �Kð�̂ihÞ

� �K0�xih � kRþ �BT
0
�P0

�B0k

� lim sup
k!1

1

k

Xk�1

i¼0

k �Kð�̂ihÞ � �K0k
4

" #1=2
1

k

Xk�1

i¼0

kxihk
4

" #1=2

¼ 0 a:s:
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7 This together with (58), (62) and the second inequality
of (61) yields

0 ¼ lim
k!1

1

k

Xk
i¼1

yi

¼ lim
k!1

�
1

k

Xk�1

i¼0

ðxTihQxih þ uTihRuihÞ �
�Jð�0Þ

þ
1

k

	
xTkh

�P0xkh � xT0
�P0x0



�

1

k

Xk�1

i¼0

�
xTihð

�Kð�̂ihÞ � �K0Þ
T

� ðRþ �BT
0
�P0

�B0Þð �Kð�̂ihÞ � �K0Þxih

��
¼ lim

k!1
k�1

Xk�1

i¼0

ðxTihQxih þ uTihRuihÞ �
�Jð�0Þ,

i.e.,

lim
k!1

k�1
Xk�1

i¼0

ðxTihQxih þ uTihRuihÞ ¼
�Jð�0Þ: ð63Þ

Notice that

tr

Z h

0

CT
0 e

AT
0
s �P0e

A0sC0 ds

� �
¼ tr

Z h

0

CT
0 ðIþ sA0 þOðs2ÞÞðh�1P0 þ oðh�1ÞÞ

�
� ðIþ sA0 þOðs2ÞÞC0ds

�
¼ trðCT

0P0C0Þ þ oð1Þ;

where we have used the first equality of (48) with � ¼ �0,
i.e., h �P0 ¼ P0 þ oð1Þ.
Then, (54) follows from (63) immediately. œ

Theorem 4: Consider the system (1). Under the condition
of Theorem 2 and the SD-based adaptive control
(24)–(28), we have

lim sup
t!1

1

t

Z t

0

ðxTs Qxs þ uTs RusÞds � trðCT
0P0C0Þ þ oð1Þ:

ð64Þ

Proof: From (24)–(28), (44) and (46) it follows that

limsup
t!1

1

t

Z t

0

ðxTs QxsþuTs RusÞds

¼ limsup
t!1

1

t

Z t

0

½ðxs�xs0 þxs0 Þ
TQðxs�xs0 þxs0 ÞþuTs0Rus0 �ds

¼ limsup
t!1

1

t

Z t

0

ðxTs0Qxs0 þuTs0Rus0 Þds

þ limsup
t!1

1

t

Z t

0

½2xTs0Qðxs�xs0 Þþ ðxs�xs0 Þ
T

�Qðxs�xs0 Þ�ds

� lim
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

ðxTihQxihþuTihRuihÞds

þ limsup
t!1

1

t

Z t

0

ð2kQkkxs0 kkxs�xs0 k

þkQkkxs�xs0 k
2Þds

� lim
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

ðxTihQxihþuTihRuihÞds

þ limsup
t!1

1

t

Z t

0

ð2c1ð1þ c1ÞkQkkxs0 k
2

þ2kQkc2ðsÞkxs0 kþ2c22ðsÞkQkÞds

� lim
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

ðxTihQxihþuTihRuihÞds

þ lim
k!1

1

kh

Xk�1

i¼0

Z ðiþ1Þh

ih

2c1ð1þ c1ÞkQkkxihk
2

þ2kQk

�
limsup
t!1

1

t

Z t

0

c22ðsÞds

�1=2

�

�
limsup
t!1

1

t

Z t

0

kxs0 k
2ds

�1=2

þOðh2Þ

¼ lim
k!1

1

k

Xk�1

i¼0

�
xTihQxihþuTihRuih

�

þ2c1ð1þ c1ÞkQk lim
k!1

1

k

Xk�1

i¼0

kxihk
2

þOðhÞ lim
k!1

1

k

Xk�1

i¼0

kxihk
2

 !1=2

þOðh2Þ: ð65Þ

Notice that

c1 ¼ hekA0kh max
�2�

kA0 þ B0
�Kð�Þk ¼ OðhÞ:

Then, by (47), (54) and (65) we get (64). œ

Remark 5: For the system (1), the SD-based
adaptive control (24)–(28) is suboptimal with respect
to the quadratic index (3), since the difference between
(20) and (64) is o(1) when h is small.

6. Concluding remarks

By using a cost-biased least square algorithm, an
SD-based adaptive LQ optimal control is designed for
linear stochastic continuous-time systems with both
unknown parameters and disturbances. It is worth
mentioning that neither an artificial persistent nor a
diminishing excitation signal is used to guarantee the
optimality of the closed-loop system.
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7 Here, what we have investigated is a comparatively
simple SD-based system without time-delay or param-
eter variation, which should be considered in many
real systems. Moreover, the noise dealt with is assumed
to be a standard Brownian motion. But, in practice,
bounded noises are often encountered and worth
studying in detail. Besides, the parameter estimation
method is nonrecursive, which may be computationally
unwelcome.
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Appendix A: Proofs of Lemmas 1–2

Lemma A.1: For n-dimensional vector-valued random
variable W ¼ ðw1,w2, . . . ,wnÞ

T, if all of its components
wi (i¼ 1, . . . , n) are independent of each other, and
with normal distribution Nð0, �2

i Þ, i¼ 1, . . . , n, then for
any given positive integer j we have

EðWTWÞ
j
�

ð2jÞ!ðn�2Þ
j

2jj!
, ðA:1Þ

where � ¼ maxf�1, . . . , �ng.

Proof: Note that for 1-dimensional random variable �
with normal distribution Nð0, �2Þ,

E�n ¼
0, n ¼ 2j� 1;

ð2jÞ!�2j

2jj!
, n ¼ 2j:

8<: ðA:2Þ

Then we have

EðWTWÞ
j
¼ Eðw2

1 þ � � � þ w2
nÞ

j

¼
X

j1þ���þjn¼j

j!

j1! � � � jn!
Eðw2j1

1 � � �w2jn
n Þ

¼
X

j1þ���þjn¼j

j!

j1! � � � jn!
Ew2j1

1 � � �Ew2jn
n

¼
X

j1þ���þjn¼j

j!

j1! � � � jn!

ð2j1Þ!�
2j1
1

2j1 j1!
� � �

ð2jnÞ!�
2jn
n

2jn jn!

¼
ð2jÞ!

2jj!

X
j1þ���þjn¼j

2j1 j1!ð2j1�1Þ!!

ðj1!Þ
2

� � �
2jn jn!ð2jn�1Þ!!

ðjn!Þ
2

�
ðj!Þ2

2jj!ð2j�1Þ!!
ð�1Þ

2j1 � � � ð�nÞ
2jn

¼
ð2jÞ!

2jj!

X
j1þ���þjn¼j

ð2j1�1Þ!!

j1!
� � �

ð2jn�1Þ!!

jn!

�
j!

ð2j�1Þ!!
ð�1Þ

2j1 � � � ð�nÞ
2jn :

This together with

ð2j1 � 1Þ!!

j1!
� � �

ð2jn � 1Þ!!

jn!

j!

ð2j� 1Þ!!

¼
j1!ð2j1 � 1Þ!!

j1!ð2j1 � 1Þ!!
� � �

ðj2 þ j1Þ � � � ðj1 þ 1Þð2j2 � 1Þ!!

j2!ð2j1 þ 2j2 � 1Þ � � � ð2j1 þ 1Þ
� � �

�
j � � � ðj� jn þ 1Þð2jn � 1Þ!!

jn!ð2j� 1Þ � � � ð2j� 2jn þ 1Þ
� 1

results in

X
j1þ���þjn¼j

j!

j1! � � � jn!
Ew2j1

1 � � �Ew2jn
n

�
ð2jÞ!

2jj!

X
j1þ���þjn¼j

�2j ¼
ð2jÞ!

2jj!

ðjþ n� 1Þ!

ðn� 1Þ!j!
�2j: ðA:3Þ

Noticing that ðaþ 1Þ=ðbþ 1Þ < a=b for all a > b > 0,
we have

ð jþ n� 1Þ!

ðn� 1Þ!j!
¼

jþ n� 1

j

jþ n� 2

j� 1
� � �

n

1
� nj,

8j ¼ 1, 2, . . . :

œ

Substituting this into (A.3) gives the desired result (A.1).

Proof of Lemma 1: By (9) we have Wðkþ1Þhð�0Þ ¼R ðkþ1Þh

kh eA0ðkhþh�sÞC0dws, and hence,

E½Wðkþ1Þhð�0ÞW
T

ðkþ1Þhð�0Þ� ¼

Z h

0

eA0sC0ðe
A0sC0Þ

T ds:

So, there exists a deterministic orthogonal matrix Hh

such that

E½HhWðkþ1Þhð�0ÞW
T

ðkþ1Þhð�0ÞH
T
h �

¼

�2
1h

. .
.

�2
nh

0BB@
1CCA � �2

hI: ðA:4Þ
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7 From the proof of Lemma 12.3 of Chen and Guo (1991),
we know that for an adapted process fat,F tg withR t
0 jasj

2ds < 1 a.s., 8t � 0, if fwt,F tg is a Brownian
motion, then there is a probability space ðe�,eF , ePÞ and
a Brownian motion fewt,eF tg on it such that

Z t

0

asdws ¼ ewbðtÞ,

where bðtÞ ¼
R t
0 jasj

2ds. Thus, when as is deterministic,
then

R t
0 asdws is with normal distribution. Let

HhWðkþ1Þhð�0Þ ¼ ðw1, . . . ,wnÞ
T. Then, from (9) it follows

that wi (i¼ 1, . . . , n) is a linear combination of indepen-
dent random variables with normal distribution, and so,
is with normal distribution. Furthermore, by (A.4) we
see that wi is independent of wj whenever i 6¼ j. Hence,
for any given positive integer j, by Lemma A.1 and the
condition that n�2

h � 1 we have

EðW
T

ðkþ1Þhð�0ÞWðkþ1Þhð�0ÞÞ
j

¼ EðW
T

ðkþ1Þhð�0ÞH
T
hHhWðkþ1Þhð�0ÞÞ

j
�

ð2jÞ!ðn�2
hÞ

j

2jj!
�

ð2jÞ!

2jj!
:

This together with (A.2) gives

E
X1
j¼0

ð�W
T

ðkþ1Þhð�0Þ�khð�ÞÞ
j

j!
jF kh

" #

¼ E
X1
j¼0

ð�W
T

ðkþ1Þhð�0ÞH
T
hHh�khð�ÞÞ

j

j!
jF kh

" #

¼ E
X1
j¼0

ðW
T

ðkþ1Þhð�0ÞH
T
hHh�khð�ÞÞ

2j

ð2jÞ!
jF kh

" #

� E
X1
j¼0

kWðkþ1Þhð�0Þk
2jk�khð�Þk

2j

ð2jÞ!
jF kh

" #

¼
X1
j¼0

k�khð�Þk
2jE

kWðkþ1Þhð�0Þk
2j

ð2jÞ!

� �

�
X1
j¼0

k�khð�Þk
2j ð2jÞ!

2jj!ð2jÞ!

� �
¼ e1=2�

T
kh
ð�Þ�khð�Þ, ðA:5Þ

where and whereafter

F kh ¼ �fx0,Wt, t 2 ½0, khÞg: ðA:6Þ

It is obvious that xkh, ukh, Wkhð�0Þ, �̂kh, and �khð�Þ (for
any given �) are F kh-measurable.
Thus, by (A.5) we have

E

�
exp �ð1=2Þ�T

khð�Þ�khð�Þ �W
T

ðkþ1Þhð�0Þ�khð�Þ
n o

jF kh

�
¼ e�1=2�T

kh
ð�Þ�khð�ÞE e�W

T

ðkþ1Þhð�0Þ�khð�ÞjF kh

h i
¼ e�1=2�T

kh
ð�Þ�khð�ÞE

X1
j¼0

ð�W
T

ðkþ1Þhð�0Þ�khð�ÞÞ
j

j!
jF kh

" #

� e�
1
2�

T
kh
ð�Þ�khð�Þe

1
2�

T
kh
ð�Þ�khð�Þ

¼ 1,

which leads to

E exp�ð1=2ÞfVkþ1ð�Þ � Vkþ1ð�0ÞgjF kh½ �

¼ E exp�
1

2

Xk
i¼0

�T
ihð�Þ�ihð�Þ þ 2W

T

ðiþ1Þhð�0Þ�ihð�Þ
n o

jF kh

" #

¼ exp �
1

2
fVkð�Þ � Vkð�0Þg

� �
� E exp�

1

2
�T
khð�Þ�khð�Þ þ 2W

T

ðkþ1Þhð�0Þ�khð�Þ
n o

jF kh

� �
� exp �

1

2
fVkð�Þ � Vkð�0Þg

� �
:

This means that, for each given � 2 �,
fe�ð1=2ÞfVkð�Þ�Vkð�0Þg, F khg is a positive supermartingale,
and thus, converges finitely almost surely, i.e.,

0 � lim
k!1

e�1=2fVkð�Þ�Vkð�0Þg < 1, for every � 2 � a:s:

ðA:7Þ

Suppose �Jð��Þ > �Jð�0Þ, then, from (24), (30) and (A.7) we
would have

lim
k!1

e�1=2fDkð�
�Þ�Dkð�0Þg ¼ 0: ðA:8Þ

Note that �̂kh as an estimate of the unknown parameter
�0 at time instance t¼ kh is given by
�̂kh ¼ argmin�2� Dkð�Þ for even k. Then there must
be Dkð�̂khÞ � Dkð�0Þ for even k. This together with
the condition that � is finite and that �� is a limit
of f�̂kg, ensures that �̂kh ¼ �� for infinitely many
even ks. Thus, Dkð�

�Þ � Dkð�0Þ infinitely often, which
contradicts (A.8). Therefore, �Jð��Þ � �Jð�0Þ holds. œ

Proof of Lemma 2: For �ihð�Þ and �k(�) given by (31)
and (32), by Theorem 2.8 of Chen and Guo (1991)
we have

Xk�1

i¼0

�T
ihð�ÞWðiþ1Þhð�0Þ ¼ Oð�1=2þ"

k ð�ÞÞ, 8" > 0: ðA:9Þ
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7 By (36) there is a subsequence of the even integers {nk}
such that �̂nkh ¼ ��. Similar to the proof of Lemma 3

in Kumar (1983), by (A.9) we have

lim
n!1

1

ln nk

Xnk�1

i¼0

�T
ihð�

�Þ�ihð�
�Þ ¼ 0 a:s: ðA:10Þ

By Assumptions A2–A3, for any given � 2 �, (11) has
a unique positive definite solution �Pð�Þ. Set

Fð�Þ ¼ �A0 � �Að�Þ þ �B0
�Kð�Þ � �Bð�Þ �Kð�Þ,

�ð�Þ ¼ FTð�ÞFð�Þ

and

�kð�Þ ¼ 1þ
Xk
i¼1

1ð�̂ih ¼ �, i is oddÞ, �0ð�Þ ¼ 1,

�kð�Þ ¼ ðxTkh�ð�Þxkh ^ 1Þ1ð�̂kh ¼ �, k is oddÞ,

where and whereafter x ^ y denotes minfx, yg for any
given real numbers x and y.
Note that by (25), if �̂ih ¼ � for i odd, then �̂ði�1Þh ¼ �.

Hence, 1ð�̂ih ¼ �, i is oddÞ ¼ 1ð�̂ði�1Þh ¼ �, i is oddÞ,
which means �i(�) is measurable with respect to Fði�1Þh.

Since ðxTih�ð�Þxih ^ 1Þ � E½ðxTih�ð�Þxih ^ 1ÞjF ði�1Þh� is a

martingale, and

Xk
i¼1

f�ið�Þ � E½�ið�ÞjF ði�1Þhg

¼
Xk
i¼1

1ð�̂ih ¼ �, i is oddÞ

� ðxTih�ð�Þxih ^ 1Þ � E½ðxTih�ð�Þxih ^ 1ÞjF ði�1Þh�
� �

,

by using Theorem 2.8 of Chen and Guo (1991) again
we can see that

Xk
i¼1

f�ið�Þ � E½�ið�ÞjF ði�1Þhg

¼ O
Xk
i¼0

k1ð�̂ih ¼ �, i is oddÞk2

 !1=2þ"
0@ 1A

¼ Oð�kð�Þ
1=2þ"

Þ, 8" > 0:

Thereby, when limk!1 �kð�Þ ¼ 1, we have

lim
k!1

��1
k ð�Þ

Xk
i¼1

f�ið�Þ � E½�ið�ÞjF ði�1Þhg ¼ 0: ðA:11Þ

Denote aði�1Þh ¼ �A0xði�1Þh þ �B0uði�1Þh. Then, we have

E½�ið�ÞjF ði�1Þh�

¼ E½ðxTihF
Tð�ÞFð�Þxih ^ 1Þ1ð�̂i ¼ �, i is oddÞjF ði�1Þh�

¼ 1ð�̂i�1 ¼ �, i is oddÞE½ðxTihF
Tð�ÞFð�Þxih ^ 1ÞjF ði�1Þh�

¼ 1ð�̂i ¼ �, i is oddÞE
	��

aði�1Þh þWihð�0ÞÞÞ
TFTð�ÞFð�Þ

� ðaði�1Þh þWihð�0
��

^ 1
�
jF ði�1Þh



¼ 1ð�̂i ¼ �, i is oddÞ

� E aði�1Þh þWihð�0Þ
� �T

HT
hHhF

Tð�ÞFð�Þ
h

�HT
hHh aði�1Þh þWihð�0Þ

� �
^ 1jF ði�1Þh



¼ 1ð�̂i ¼ �, i is oddÞ

� E Hhaði�1Þh þHhWihð�0Þ
� �T

HhF
Tð�ÞFð�ÞHT

h

h
� Hhaði�1Þh þHhWihð�0Þ
� �

^ 1jF ði�1Þh



, ðA:12Þ

where HhWihð�0Þ satisfying (A.4) has been defined in the
proof of Lemma 1, and is a zero mean random vector
with independent normal distributed components.

By Assumption A1, we have
R h
0 eA0sC0ðe

A0sC0Þ
Tds > 0,

which ensures that all the �ih, i¼ 1, � � �, n, in (A.4) are
positive. Similar to Lemma 5 of Kumar (1983), we can
conclude that when Fð�ÞHT

h 6¼ 0, there exists "1 > 0
such that

E Hhaði�1Þh þHhWihð�0Þ
� �T

HhF
Tð�ÞFð�ÞHT

h

h
� Hhaði�1Þh þHhWihð�0Þ
� �

^ 1
i
� "1 > 0,

or equivalently,

E½ðaði�1Þh þWihð�0ÞÞ
TFTð�ÞFð�Þðaði�1Þh

þWihð�0ÞÞ ^ 1Þ� � "1 > 0: ðA:13Þ

This together with (A.12) implies that when Fð�Þ 6¼ 0,

E½�ið�ÞjF ði�1Þh� � "11ð�̂i ¼ �, i is oddÞ:

Thus, we have

��1
k ð�Þ

Xk
i¼1

E½�ið�ÞjF ði�1Þh�

� ��1
k ð�Þ

Xk
i¼1

"11ð�̂i ¼ �, i is oddÞ

¼ "1�
�1
k ð�Þ½�kð�Þ � 1�,

and hence, by (A.11) we can conclude that when
Fð�Þ 6¼ 0 and lim

k!1
�kð�Þ ¼ 1 a.s.,

lim
k!1

inf ��1
k ð�Þ

Xk
i¼1

�ið�Þ � "1 > 0 a:s: ðA:14Þ
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7 We are now in a position to show (37). By condition (36),
there is a subsequence nk such that

lim
k!1

ðln nkÞ
�1�nkð�

�Þ > 0: ðA:15Þ

Without loss of generality, in the sequel, we assume that
�̂nkh ¼ �� for all positive integer k. Then by (28) and (31)
we get �ihð�

�Þ ¼ Fð��Þxih a.s. Hence,

lim
k!1

infðln nkÞ
�1
Xnk�1

i¼0

�T
ihð�

�Þ�ihð�
�Þ

� lim
k!1

infðln nkÞ
�1

�
Xnk�1

i¼0

1ð�̂ih ¼ ��, i is oddÞ�T
ihð�

�Þ�ihð�
�Þ

¼ lim
k!1

infðln nkÞ
�1

�
Xnk�1

i¼0

1ð�̂ih ¼ ��, i is oddÞxTihF
Tð��ÞFð��Þxih

� lim
k!1

infðln nkÞ
�1
Xnk
i¼1

�ið�
�Þ

¼

�
lim
k!1

ðln nkÞ
�1�nk ð�

�Þ

�
lim
k!1

inf ��1
nk
ð��Þ

Xnk
i¼1

�ið�
�Þ:

ðA:16Þ

By (A.14) and (A.15) we see that if Fð��Þ 6¼ 0, then there
would be

lim
k!1

infðln nkÞ
�1
Xnk�1

i¼0

�T
ihð�

�Þ�ihð�
�Þ > 0 a:s:

This contradicts (A.10). Thus, Fð��Þ ¼ 0, or equiva-
lently, (37) holds.
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