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The problem of sampled-data (SD) based adaptive linear quadratic (LQ) optimal control is
considered for linear stochastic continuous-time systems with unknown parameters and dis-
turbances. To overcome the difficulties caused by the unknown parameters and incomplete-
ness of the state information, and to probe into the influence of sample size on system
performance, a cost-biased parameter estimator and an adaptive control design method are
presented. Under the assumption that the unknown parameter belongs to a known finite
set, some sufficient conditions ensuring the convergence of the parameter estimate are
obtained. It is shown that when the sample step size is small, the SD-based adaptive control
is LQ optimal for the corresponding discretized system, and sub-optimal compared with that

of the case where the parameter is known and the information is complete.

1. Introduction

Practically, many control systems that are implemented
today are based on sampled-data (SD) control (Astrém
and Wittenmark 2002), so the SD-based control
problem has received considerable attention. For such
systems, the available information for control design
is the measurement of the system state at the sample
time instance rather than the complete state process.
Some fundamental and elegant results on SD-based
control systems have been obtained on controllability
and observability (Fuster 1991), stabilization (Nesi¢
et al. 1999, Ishii and Francis 2003), the H,, problem
(Toivonen and Sagfors 1997, Bamieh and Pearson
1992), robust and adaptive control (Zhang et al. 1989,
Ortega and Kreisselmeier 1990, Hu and Hollot 1993,
Ilchmann and Townley 1999) and optimal control
(Qiu and Chen 1994, Yao and Zhang 2003). Among
others, the most problems of concern are related to the
adaptive control and optimal control. In the adaptive
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control case, the systems are with unknown parameters
or uncertainties, and the works are mainly devoted to
SD-based control design and stabilization analysis of
the closed-loop systems (Zhang et al. 1989, Ortega and
Kreisselmeier 1990, Hu and Hollot 1993, Ilchmann
and Townley 1999). As for the SD-based optimal
control, the works mainly focus on the case where the
parameters are known and the system has no distur-
bance (Qiu and Chen 1994, Yao and Zhang 2003,
Tan et al. 2005). For instance, Yao and Zhang (2003)
investigated the optimality of the SD-based LQ control
for linear stochastic continuous-time systems with
known parameters; Tan er al. (2005) presented an
SD-based adaptive LQ control design procedure for
systems with unknown Markov jump parameters and
without disturbance, and studied the stability and
index optimality of the closed-loop systems. It is
shown that when the sample step size is small, the
SD-based adaptive LQ control is suboptimal.
Although some work has been done with the SD-based
system, to the authors® knowledge, there is no
SD-based adaptive LQ optimal control result about
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the invariant linear systems with unknown parameters
and Brownian motion noise yet.

In this paper, we would like to study the SD-based
adaptive LQ optimal control problem for linear
stochastic continuous-time systems with both unknown
parameters and disturbances. Similar to Kumar (1983),
we assume that the unknown parameter belongs to a
known finite set. In this SD-based control case, it is
very difficult and complicated to construct an adaptive
LQ optimal control due to the existence of the unknown
parameters and disturbances, and incomplete state
information, since the conventional full-data based
optimal (adaptive) control (see Caines and Zhang
1995, Duncan et al. 1999, Chen et al. 1996) is not
feasible. Thus, some problems emerge naturally, such
as, whether or not there exists an SD-based adaptive
LQ optimal control when the system is with unknown
parameters and disturbances, how to construct an
SD-based adaptive optimal control, and what is the
cost difference between the full-data-based optimal
control and the SD-based optimal control. To answer
these questions, we will first estimate the unknown para-
meters by using a cost-biased least square algorithm
inspired by Kumar (1983), and then, design an SD-
based adaptive control according to the certainty
equivalent principle. It is shown that when the sample
step size is small, the SD-based adaptive control is LQ
optimal for the corresponding discretized system, and
sub-optimal compared with that of the case where the
parameter is known and the complete information
rather than only the sampled-data of the state process
of the continuous-time system is available for control
design.

The remainder of this paper is organized as follows:
in §2, the control system to be studied is described,
and some assumptions, notations and preliminary
results are given. In §3, a parameter estimation
method is presented, and an SD-based adaptive LQ
control is designed. Besides, the convergence property
of the parameter estimate is analysed. Section 4 is
concerned with the stability analysis of the closed-loop
system with the SD-based adaptive control. Section 5
studies the optimality of the SD-based adaptive control.
Section 6 gives some concluding remarks.

2. Problem formulation and preliminary results

Consider a stochastic linear continuous-time system of
the form

dx, = A(B)x, dt + BOo)u, dt + C@)dW,, (1)

where 6) € © is the unknown system parameter to be
estimated for control design, ® is a known finite set,
x; € R" is the state vector, u; € R™ is the control
vector and W, € R’ is a standard Brownian motion with

EW,=0, EWW! =1l ()

W' denotes the transpose of W, E(-) denotes the
mathematical expectation. The initial value x, is with
normal distribution and E|xo|*> <oo. | -|| is the
Euclid norm of R" and the corresponding induced
matrix norm. / is an identity matrix with appropriate
dimension.

For expression simplicity, in the sequel, we
will denote A4(6y), B(6y) and C(6y) by Ay, By and Cy,
respectively.

The problem we would like to solve is to design
a sampled-data (SD) based adaptive control for the
system (1) to minimize the following quadratic cost
function

t
J(u) = lim supl / (x!Ox, + u! Ruy)ds, (3)
0

i—oo

where R>0, 0>0, and uZ{u, t>0} with u €
of{xg, s <t} and o{x, s <1t} being the o-algebra
generated by {x;, s < t}.

Suppose that the sample step is /4, and let

t
t'=1|-|h 4
1) o
where |[x]| denotes the maximal integer less than or
equal to x. Then for a continuous-time system of the
form
dx, = A(®)x,dt + BO)u,dt + C(O)dW, ®)
with SD-based control
Uy = Uy, le[[/7[/+h)7 (6)
we have

Xty = AO)Xn + BOugs, + Wery(6), (7

where x;;, = x(kh), and

h
A0) = 4O Bo) = / A9 dsBO),  (8)
0
o (k+1)h
W(k+1)h(9) _ / eA(e)((kH)/hv)C(g)dWy_ 9)

kh
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For the convenience of citation, we introduce the
following assumptions.

Assumption Al: (Ag, Cy) is controllable.

Assumption A2: For all 6e®, (A(6),B®),0'?)
is controllable and observable.

Assumption A3: The  sample step h < x/|ImA|,
Yie A (AO)) and 0 € ® where Imi denotes the
imaginary part of A, and A(A(6)) denotes the eigenvalue
set of A(6). When Imx = 0, let /|ImA| = oco.

Assumption Al is to guarantee some excitation
degree of the disturbance to system state process in
order to ensure the convergence of parameter estimate
(Chen et al. 1996). Many different assumptions on the
noise gain matrix can be found in the literature. For
instance, it is assumed to be of full rank in Kumar
(1983) and Caines and Chen (1985), or span(By) C
span(Cy) in Chen (1995) and Gao and Pasik-Duncan
(1997).

Assumption A2 is standard for the LQ control
problem. It ensures that the following continuous
Riccati equation has a unique positive definite solution
P(0) for every 6 € ©:

AT(0)P(O) + P(B)A(B) — PO)BO)R"'BT()P(6) + 0 = 0.

(10)
Assumption A3 together with Assumption A2 guaran-
tees the controllability of (4(6), B(9)) and the observabil-
ity of (4(0), 0'/?), and hence, ensures that the following

discrete Riccati equation has a unique positive definite
solution P(0) for every 6 € ® (Sontag 1998):

P(6) = /IT(e)[P(e) — P(0)BO)(B"(0)P©)B®) + R) '

x BT(e)P(e)]A(e) +0. (11)
Let

K(6) = —R~'BT(6)P(0),
K(0) = —[BT(6)P(6)B(9) + R]"' BT(0)P(0)A(6).  (12)
Then for any given 6, under Assumptions A2 and A3,

from Bertsekas (1976), Kumar (1983) and Sontag
(1998) we have the following.

(1) (11) can be rewritten as

P(6) = [A(6) + BO)K(6)]" P(O)[A(6) + BO)K(9)]
+ KT(0)RK(6) + Q (13)

(i) A(6) + B(H)K(0) is stable in the sense that all eigen-

values of A(#) + B(B)K(H) are in the open unit disk
of the complex plane.

(i) Within the class of matrices K such that
A(0) + B(O)K is stable, K(6) is the unique feedback
gain to minimize the cost function

B . 1 k—1
J®.u) = lim %g(xiZ(e)me(e) + (@) Ru (). (14)
where u = {uy,i=0,1,...,} with wuy € of{xy, j=0,

1,...,i} and o{xp, j=0,1,...,7} being the o-algebra
generated by {x;, j=0,1,...,i}.
(iv) Let

J(6) = min J(6, u), (15)

then "
J(6) = tr< / CT(Q)eAT(Q)“'P(Q)eA(G)“'C(O)ds), (16)
0

where we have used

—T _ _
E [ W s yn O PO W (1) (9)]

Y]
= tr( / CT(0)e" O p(9)e? @ x C(Q)ds). (17)
0

For system (1), it is well-known that when the parameter
0o, i.e., (A, By), is known a priori, and (A, By, Q'/?)
is controllable and observable, the algebraic Riccati
equation

ATPy+ PoAdg — PyByR™'BIPo+Q =0  (18)

has a unique positive definite solution Py, and the linear
feedback

u* = —R "Bl Pyx, (19)

is such that the quadratic cost function (3) reaches
its minimal, i.e.,

J(W*) = min J(u) = tr(CL Py Cp). (20)
3. Parameter estimation and SD-based adaptive
control design
To design an adaptive control law for system (1), it is

natural to choose the well-known least square method
to estimate the unknown parameters. However, if the
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least square method is used alone, then it is sometimes
difficult to get an optimal adaptive control.

To see this, let us consider a one-dimension
system (1). Suppose its parameter (4, B, C) is unknown,
but is known to be in the set {(—2In2, —4In2,1),
(0,2,1)}. The cost function is of the form (3) with
QO=1and R=12.

Here we choose sample step size #=0.5. Then, by
(7)-(9) we have

A =1/2, B(l)=-1, AQ)=1, BQ)=1,
o 0.5(k-+1)
WO.S(k+1)(1):/ 2—(k+1)+2deS’
0.5k
o 0.5(k-+1)
WO.S(k+1)(2):/ dw..
0.5k

From Kumar (1983), the optimal control law of the
corresponding discrete-time system is

2W/7-5 . L
[Tx,<h, if0y =1, ie. (4,B)
_ — (L —1):
e = K(6o)Xin = . @ — 1
R if 6 =2, i.e. (4, B)
=(1,1),

21

where ¢ € ([kh, (k + 1)h]) and K(6,) is given by (12).

Since we do not know the true value of (A4, B, C),
at each sample time instant ¢=/k/h we will use the least
square method to get the estimate 6y of the true value
0y based on the sampled-data (xo,ug, Xp, tp, . . .y Xki)s
and then, use the estimate to design an adaptive control
law uyy,. To this end, let

k—1

er(k) = > (xrim — A — B(u)”

i=0

el

! 2
(x(i+1)h —5Xin + ufh) )

Il
g

el

k) = (X 1n — AQ)xin — BQu)

ing

=

= (X(m)h — Xih — Mi/z)z-

Il
S

If ej(k) <ex(k), then by the least square method,
(A(1), B(1)) = (2, — 1) is chosen to be the estimate of
the true parameter (4, B), or equivalently, O = 1.
Otherwise, (A4(2),B(2)) =(1,1) is chosen to be the

estimate, or ékh = 2. Therefore, by (21) the optimal
adaptive control is

27 -5 .
\/_—th, if ej(k) < ex(k) ;
U = 6
1
— — Xihs otherwise.
4
Note that

k—1 2 k-l
1 2
E (x(i+1)h — Exih + um) > Z(x(i+l)11 — Xip — um)

i=0 i=0

= Ukh = — = Xk

4

1 2 2
= (x(k+1)h - Exkh + “kh) = (X(k+1)h — Xkh — Mkh)

2 k
1 2
= Z(x(H-l)h —=Xin + ul/‘l) > 20: X(i+)h — Xinh — uih)
=

i=0
1
= Uk+1)h = _Zx(k-H)h
1
= UK = = 7 XK for all K > k. (22)

We can see that if at some time instant r=kh, the
parameter estimate is 6y, =2, then it will remain
Orn = 2 thereafter, and the adaptive control law will
keep being ug, = — L xg; for all K > k.

In fact, this may happen in a comparatively large
probability which partly depends on the sample size /.
Suppose that the true parameter is (—21In2, —41In2)
and the initial values are xo=1 and uy=0. Then,
we have

1 2 )
Up=——Xp < xh_ixO"'uO > (xp, — X0 — Up)

0.5 2 0.5 1
& (f 225"dWS> > (/ 225"dW5——>

0 0 2

0.5 2 0.5 2
@(/ 22"dWS> ></ 22‘YdWs—1>

0 0

0.5 1
@/0 25 dw, >3 (23)

1
4
2

Since W = f(? 2 22dW, obeys the norm distribution
N(0,3/41n2), W >1 occurs with probability 0.3154.
Thus, the adaptive control law will stick at the
“worse” control law u;, = — %xk;, at least with probabil-
ity 0.3154. In this case, the cost of the corresponding
discrete-time system is going far away from the optimal
value if the true value is 6, = 1. Precisely, by (16), the
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optimal cost of the corresponding discrete-time system is
0.3494. However, by MatLab program, the cost under
adaptive  control law  {ug, = —Jxpk=1,2, ...}
mostly falls into the interval (0.49, 0.51), which
is apparently larger than the optimal cost. Here due
to the existence of Brownian motion and the
limitation of sample step, the cost under adaptive
control law is random. Thinking roughly, the cost of
the SD-based system will also go far away from the
optimal value.

Actually, the least square algorithm has a natural
tendency to return estimates with larger optimal
cost. In a general way, suppose 6y is an estimate of
0o at t=kh given by the least square method, and
Uy = 13(9/\,/1))@(;, is the adaptive control where I%(Qkh) is
defined by (12) with 6 = 6;;. Then, just as Campi and
Kumar (1998) pointed out, what the least square algo-
rithm returns is the most possible closed-loop system,
and the behaviour of the true system (A(6y), B(6))
with the loop closed by adaptive control law
Upeh :K(Gk/,)xk/, is the same closed-loop system with
estimate (/i(ékh),g(ékh)), in other words, their closed-
loop gains are the same and equal to

A(60) + B(60)K(B1s) = ABps) + BB1) KB

This means that the cost of running the true system is
the same as that of the estimated system under feedback
k(ékh). Meanwhile, k(ék;,)xkh is apparently not optimal
for the true system, but optimal for the system
(A(Ogp), B(6xi)). Thus,

J(O) = J(60).

To overcome this nature tendency, similar to Kumar
(1983) we will adopt a cost-biased method to estimate
the unknown parameter and design SD-based adaptive
control.

3.1 Parameter estimation and SD-based adaptive
control design

This subsection is devoted to designing an SD-based
adaptive control. We first use a cost-biased estimator
to estimate the unknown parameter 6y, and then, use
the certainty equivalent principle to construct the
desired adaptive control.

Similar to Kumar (1983), choose an arbitrary
deterministic function ¢(k) such that

p(k) >0, lim p(k) =+o0,  lim 0. (24

keoom:

At each time ¢ = kh, estimate the unknown parameter 6,
as follows:

. argmin[g(k)J(0) + Vi(0)], k is even,
On = 7<© (25)
Ot—1yh» k is odd,

where J(0) is given by (16), and

k—1

Vi) =Y (Xern — A©O)xin — B(Q)uih)T
i=0

x (X(nn — AO)xi — BO)us,). (26)

Define the SD-based adaptive control as

W=y, 1€t +h), 1 = &Jh; 27)

U = k(éklz)xkl1, (28)
where k(ékh) is given by (12) and (25), or

K(6r1) = —[B" (0x) PO B6rs) + R
x BT (0) P(Ori) A(On)- (29)

3.2 Convergence analysis of parameter estimates

Let

Di(0) = i J(6) + Vi(6), (30)
din(0) = [Ao — AO))x + [Bo — BO)lui, 31)
k—1

@ =1, w0 =1+) ¢y©O)pu®, (32)
1

=

where Ay = A(6y), By = B(6y), and J(6) is given by (15)
and (16). Then, by (15) we have

k=1

Vi(0) = 11k(0) + 2 dh(O) Wi 1(6o)
i=0

k—1
+ 3 W 160 Wi 1(6o)- (33)
i=0

Before going further, we need the following lemmas.

Lemma 1: [If 0" is a limit point of{ékh},io:l almost surely,
and the sample step size h is such that na,% <1, then
J(O) < J(6y), where J(0) is defined by (15), and

172

h
op = / e Co(e? o) ds (34)
0
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The proof is given in Appendix A.

Remark 1: To ensure na,% <1, by (34) it suffices to
choose /i such that

|
h<minll, ———
B { ﬁ||co||2e2Ao"}

In fact, we know that, under Assumption A3 and the
condition no; < 1, i should belong to set

H=1h:h

1 T
< min I, ,
A e A(A()) { V|| Co el Ilm)\l}
0e®

(35)

Lemma 2:  Under Assumptions A1-A3 and the condition
naﬁ <1, if for a 0" € ©, the parameter estimate Oy, given
by (25) satisfies

k—1

. 1 A "

hﬁsolclpm; 10 =60")>0 a.s., (36)
then

Ao + BoK(6*) = A(6%) + B(0")K ("), (37)

where Ay = A(6y), By = B(6y), and A(0), B(6) and K(6)
are given by (8) and (12), respectively.

The proof is given in Appendix A.

From Lemmas 1 and 2, and similar to the proof of
Theorem 8 in Kumar (1983), we can get the following
theorem.

Theorem 1: Suppose that Assumptions A1-A3 hold and
the sample step size h is such that na,% <1, where o,
is defined by (34). Then, under the SD-based adaptive
control (24)—(28), the discretized closed-loop system

Xpn = (Ao + BoK(B1))Xn + Wit 1yn(00)

of the linear continuous-time system (1) has the following
properties

k—1
Jim (In DY 1(KEGy) £ Ko) =0 as. (38

=0
]kfl B
Jim (In k) ;1<u,-h¢1<ox,-h)=o as.,  (39)

L

where Ky = K(6y) is the optimal feedback gain defined by
(11) and (12) to minimize the quadratic cost function (14).

Remark 2: This theorem says that the feedback gain
K(6) given by (24)—(28) converges in the sense of (38)
and (39) to the optimal feedback gain K(6) of the
discritized system

Xeryh = Aoxin + Botn + Wy 1n(60) (40)

with quadratic cost function (14).
4. Stability result
The purpose of this section is to analyse the stability

of the closed-loop system of the system (1) with the
SD-based adaptive control (24)—(28).

Theorem 2: Consider the system (1) with normal
distributed initial value x, satisfying E||xo||> < oo. Then,
under the conditions of Theorem 1 and the SD-based
adaptive control (24)—(28), we have

. I
hmsup;/ x5l ds < 00 a.s.. 41)
0

—00

Proof: Substituting the SD-based adaptive control
(24)—(28) into (1), we get the following closed-loop
system:

dx, = Agx,dt + BoK(O,)x, dt + CodW,
= Ayx, dt + Ag(x; — x,)dt + CodW,,  (42)

where ¢’ is defined by (4), and

Ay = Ay + BoK©,)).
From (42) it follows that

/
X —x; = A //(xs —x;)ds+ (t —t")Ax,
+ COI(W, — W), Vrelt',t'+h). (43)
Hence,
¢
X, = xell < 1 4ol /, x5 — xi/llds + Al Ay [ lx, |

+ 1Co(W: = Wil

and by the Gronwall lemma,

I — x| < Rl AL, oW | Co(W, — W)l
1
+ [l 4oll / A=) Co(Wy — W) |Ids
.

= allxell + (), (44)
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where

c1 = helI" maxgeg || Ao + BoK(O)|.
ex(t) = | Co(W; = Wo)ll + | Aolle! 01"
x fl’, |Co(Wy — W,)|ds.

Therefore, we have

Il = Nl +x0 — x|l < x4+ Nl — x|l
< (c1 + Dlixg |l + c2(0). (45)

Noting that ||W; — W] is independent, from the law
of large number it follows that

) 1 t h
hmsup7 f lex@)I>ds = E | |lea(s)]> ds = O(h?).
1—00 0 0
(46)

Hence, applying the ergodic theorem to || Wj;(6o)||*", by
Assumptions A1-A3, (38), and Theorem 12 of Kumar
(1983) we can obtain

=
lim supkz Ixinllf <00 as., p=24, (47)

k—o00 i—0

which together with (45) and (46) renders

. 1 [
hmsup—/ llxs]1> ds

11— 00
(i+1)h

= lim sup / llx,]1 ds

k— o0

— (i+1)h 5 5

< limsup— / 2(c1 + 1) lxinll” + 2¢5(s) [ds

keoop /’l; o [ ( 1 ih 2( ]
= limsup 2(c1 + 1>~ Y lxul* + O(h?) < oo.

k—o00 k i—0

Thus, (41) is true.

5. Optimality results

In this section, we would like to study the optimality of
the SD-based adaptive control. To do so, we need the
following lemma.

Lemma 3: Let P(0) be the positive definite solution of the
continuous Riccati equation (10), and P(6) be the positive
definite solution of the discrete Riccati equation (11) with
A(0) and B(6) given by (8). Then, under Assumptions A2
and A3, we have

/lin}) hP(6) = P(6), llin% K(0) = K(6), (48)

where the feedback gains K(f) and K(#) are defined
by (12).

Proof: From (11) it follows that
PO) = (A() — I+ D'[P(6) — PO)BO)(B'(6)P(6)B(6)
+ R)'BT0)PO)] (A() — I+ 1)+ O
= (A(6) — )T P(OY(A() — I) + (A(6) — D" P(6)
+ P(O)(A®) — 1) + P(©)
— AT(0)P(6)B(©O)(B(0)P(0)B(6) + R)
x B ()P(O)A(6) + O,

—1

or equivalently,

(A©) =D

(A©) -’
h h

0= (hP(0)) + hP(6) +0

o T
+ 4O i) -1

BO) (BT(Q)

-1
— AT(O)(hP(6)) ——

T(9)

(hP(0))B(6) + R)

(hP(6))A(6). (49)
Denote Pj(6) = hP(6), then, (49) can be rewritten as
Pu(0) + P;,(G)(/I(Q# +0

N (A(H)h— n’

_(A®)-D"
O_T

Py(O)(A(®) — 1)
H@@%)

-1
AT(0)P4(0) m@mm+@

« B 37(60) P, (0)A(0).

By (8) we know that A(), B(6), (A(6) — I)/h and (B(6))/h
are continuous with respect to / € [0, 1], and

hm A(6) = lim O =
—0 h—0

lim B(6) = l1m eA<9>’dzB(9) =0,
0

h—0

4 — n—1
lim A(Qi r_ (A(e) + ZA(G) 4 ) = A(0),

h—0 P

D Y]
iy = m% [ e raemo
= lim (B(@) + ioj (Af)lh), B(@)) — B).
(50)
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By Assumption A2, the continuous Riccati equation (10)
has a unique positive definite solution P(6). Notice that
the solution of the algebra Riccati equation is continu-
ously dependent on the coefficient matrices. Then, it
follows from (50) that

lim P,(6) = P(6),

which together with (12) (the definitions of K(#) and
K(0)) gives

Rl 17
K@) = — [B © Py(0)B(6) + R} B ©® Py(6)A(6)
= —R7'BO)PO)I + o(1)).
Thus, (48) is true. ]

Remark 3: Lemma 3 shows that when the sample step
size h is small, the positive definite solution P(6) of
discrete Riccati equation (11) is approximately equal
to (1/h)P(#). This means the smaller the / is, the larger
the P(6) is. On the contrary, when / is small, so is the
difference between the two optimal feedback gains of
the discretized system (40) and the continuous-time
system (1). And by Theorem 1, as &7 — 0, the feedback
gain K(,) of the SD-based adaptive control (24)—(28)
approaches to the optimal feedback gain K, of the
system (1) in the sense of (38) and (39).
We now give a simple example to illustrate (48).

Example 1: Consider the system (1) withn =m =171=1
and cost function (3). Let A=1, B=1,0=1and R=1.
Then, the continuous Riccati equation (10) becomes

—P>42P+1=0,
which has a unique positive solution
P=+2+1. (51)

For a given sample step size h, the parameters of the
corresponding discretized system (11) are A = e,
B=¢"—1, respectively. Hence, the discrete Riccati
equation (11) is

P=[P- P - 1P - 17P+1) ] 41,
which has a unique positive solution

_ e e
Pt (52)

This together with (12) gives

€2h + eh €2h +1

(@ =D+ Ve + 1)+ 1

K=-(2+1), K=-

Thus, when 7 is sufficiently small, we have

hP =2+ 1+ 0(h) = P+ Oh),
K=—(2+1)+0(h) = K+ O(h),

i.e., (48) holds.
With Lemma 3, similar to Kumar (1983), we can
prove Theorem 3.

Theorem 3: Under the condition of Theorem 2 and the
SD-based adaptive control (24)—(28), for the discretized
system

X 1yn = AoXun + Botgs, + Wy 1yn(6o) (53)

of the system (1), we have

k—1
: T T _ 7
klggo% ?:0 (X, Oxin + uy, Ruip) = J(6p)

= tr(CgPyCo) + o(1) a.s., (54)

where J(6y) is given by (15) and (16) with 6§ = 6, i.e.,

h
J(0) = tr< / cr eAKSPoeAOSCOds) (55)
0

Proof: From (13) we obtain

O + K" () RK 1) + [Ao + BoK(Bra))”

x Po[Ag + BoK(O)]

= Q0+ [Ko + (K(B) — Ko))" RIKy + (K(Bin) — Ko)]
+ [Ao + BoKo + Bo(K(0n) — Ko)l" Pol Ao + BoKo
+ Bo(K(Or) — Ko)]

= Py + [K(0i) — Kol RIK(O) — Kol + [K(O)
— Kol BY Py Bo[ K(6r) — Ko]
+ [K(Bin) — Kol " RKy + [K(Bri) — Ko]”
x BYPo[ Ay + BoKo)
+ ([K(Bn) — Kol"REq + [K@i) — Ko]”
x BIPo[Ag + BoKo))'. (56)
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From the second equality of (12) we have
[B PyBy + RIKy = — B Py Ao,
or equivalently,
Ry + BT Podo + BT PoBoKo = 0,
which leads to

[K(Bxn) — Kol" RKo + [K(Bxn) — Kol BY
X 130[/10 + B()k()] =0.

This together with (56) gives

O + K" (6n) RK(Okn) + [Ao + BoK(Grn)]"
x Po[Ag + BoK(6n)]
= Py + [K(Brs) — Kol"[R + BI Py Bol[K(6rs) — Kol. (57)

Let

Y1) = XppQxun + i Rug, — J(O0) + Xy 1)y PoX i
— x] Pox, — x1,[K(B1) — Kol'[R + BI Py By
x [K(Okn) — Kolxpn. (58)

Then, substituting
Xtertyn = [Ao + BoK@un)Ixwn + Wies 11(60)

and  wg, = K(Ow)xin

into (58) and using (57) gives

—r - - —r
Viert = Wi 1n(00) Po Wik 1yn(60) — J(00) + 2W i, 1),(60)

x Po[Ao + BoK(On)]xph- (59)
By (55) and the definition of Wj;(6y) we have
ElyisilFrn] = E[W(iJrl)}1(90)P0V_V(k+1)/1(90)] — J(69) = 0.

Hence, {yi, Fx} is a martingale difference sequence.

From (59) we have

E[Viﬂ |F k]
= E[W e, 1,(00)Po Wer1yi(60) — J(00)
+4x7, [ Ao + BoKBri)" PoE{ W 1n(6o)
X [V_V(Tk+1)h(90)13 o W 1n(00) — J(00)]}
+ 4], [ Ao + BoK©@)) Po{ EIW e 1 (00) Wy 1,601}
x Po[Ao + BoK(On)]xw
< a+ c|bllllxell + 40 l1xenll?
< (a+cllbll) + (4o, + cllbDllxkall, (60)

where o, is given by (34), and

_T E— —_
a = E[Wy_1,00)PoWsn(6o) — J(O0)T

b= 4E{I/_V(k+1)/1(00)[I/_V(7;<+1)/1(00)P oW 1(00) — JO0)]},
¢ = Iéle%x{llf’o[zio + BoKO)]II}.

Similar to Kumar (1983), it can be shown that under
the SD-based adaptive control (24)—(28), the system
state xy, satisfies

o0
kK72 |xmll? <00 as. and  lim k7' |lxl® = 0 a.s.
k—o0
k=1
(61)

Hence, by (60) and the first inequality of (61), we have

o0

k_zE[yiHL}’:kh] <00 da.s.
k=1

From this, the convergence theorem of martingale differ-
ence sequence (Gong 1987), and the fact that {yx, Fr;}
is martingale difference sequence, it follows that

I
)EEOE;” =0 as. (62)

By (38) and (47) we have

. [ _ L
lim sup -3 (K (On) — Kol (R + B PoBo){K(B)
— 00 i:()
— Kolxu < IR+ BIPyBy||
= 172 = 1/2
x lim sup [EZ I K(0) — K0||4:| [EZ ||x,-h||4]
k—o0 i=0 i=0

=0 a.s.



Downloaded By: [Zhang, Ji-Feng] At: 02:23 20 September 2007

Sampled-data based control of stochastic systems 1685

This together with (58), (62) and the second inequality
of (61) yields

0= 11m ka,

= lim { Z(’Cthxl/’L—‘f_ulhRulh) j(GO)

k—o00 pary

[th}_)()xkh — XOT}_)()XO]

»|~ »\

k-
Z [ v (K(On) — Ko)"
=0
x (R + BI'PyBy)(K(0,) — ko)xih:| }

= 11m k! Z(th’czh + uhRuzh) j(QO)a
i=0

1e.,
k—1

lim k=1 (], Oxxin + ufy Rug) = J(@).  (63)
i=0

k—o00

Notice that

h -
tr(/ C()TeAé‘YPoeAO‘YCo ds)
0

h
= tr< / CII+ sA4g + O (™' Py + o(h™ 1))
0

x (I+sAy+ 0(s2))c0ds>
= tr(C§ PoCo) + o(1),

where we have used the first equality of (48) with 6 = 6y,
ie., hPy = Py + o(1).
Then, (54) follows from (63) immediately. ]

Theorem 4:  Consider the system (1). Under the condition
of Theorem 2 and the SD-based adaptive control
(24)—(28), we have

. 1 [
lim sup;/ (xSTQxS + usTRus)ds < tr(COTPOCo) + o(1).
0

—00
(64)
Proof: From (24)—(28), (44) and (46) it follows that

. 1 [
lim sup; / (xSTQxS + uSTRuX)ds
0

—00

. 1 [
=tmsup [ [ =430 Qr — . +x0)-+u] Rl
0

=00

. 1 [
=lim sup?/ (xXT,QxSr —l—uXT,RuS,)ds
0

=00

=00

x Q(xy — xy)]ds

1 !
+imsups [1237005 )+ (v, —x0)"

(i+1)h
T T
< /}E&EZ /ih (X, Oxip 4z, Ruy)ds

+limsup / Q10N xs llxs — x|

=00

+1011xs — x¢ [1P)ds

(i+1)h
< lim —2/ (x,0xi + ufy Rugy)ds
i—0 Jih

+limsup - /(2c1(1+c1)IIQIIIIXyII

=00

+2[1Qllea(9)llxs | +263() 1 Qs

(i+1)h
T T
= kILHgOEZAI (X OXin + uy, Ruip)ds

(i4+1)h
a g . 2
+k1520kh2/ 211+ ) IQN

1/ 1/2
+2||Q||<1imsup; / cg(s)ds>
t—00 0

1 1 172
x(limsup? / ||xs/||2ds> +0(h?)

—00
k—1

— 11m kZ( ,th,h—i-ulhRu,h>

+2e1(1 +cl)IIQ||,jLngoE; Joxan]?

k—1

1/2
.1
+0<h><kgn;o %Du{huz) +O(). (65)
i=0

Notice that

¢ = hel bl max || g + BoK(0)|| = O(h).
12,

Then, by (47), (54) and (65) we get (64). O

Remark 5: For the system (1), the SD-based
adaptive control (24)—(28) is suboptimal with respect
to the quadratic index (3), since the difference between
(20) and (64) is o(1) when & is small.

6. Concluding remarks

By using a cost-biased least square algorithm, an
SD-based adaptive LQ optimal control is designed for
linear stochastic continuous-time systems with both
unknown parameters and disturbances. It is worth
mentioning that neither an artificial persistent nor a
diminishing excitation signal is used to guarantee the
optimality of the closed-loop system.
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Here, what we have investigated is a comparatively
simple SD-based system without time-delay or param-
eter variation, which should be considered in many
real systems. Moreover, the noise dealt with is assumed
to be a standard Brownian motion. But, in practice,
bounded noises are often encountered and worth
studying in detail. Besides, the parameter estimation
method is nonrecursive, which may be computationally
unwelcome.
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Appendix A: Proofs of Lemmas 1-2

Lemma A.1: For n-dimensional vector-valued random
variable W = (wy,wo,..., w,,)T, if all of its components
w; (i=1,..., n) are independent of each other, and
with normal distribution N(0, 01.2), i=1,..., n, then for
any given positive integer j we have

(2)lnoy

Ty
EOVTWY <

(A.1)

where 0 = max{oy,...,0,}.

Proof: Note that for I-dimensional random variable &
with normal distribution N(0, o?),

0, _ n=2-—1;
Eg" = { (2))l0” Y (A.2)
> "

Then we have
E(WTW)] E(Wl + + Wn

1 4
_ Z J: E(W211 . 1/V5]r1)

St tn=i ]l ]

il . .
= E T / - 'EW%]1 ~~-Ewﬁ’”
S e

_ oy Qe @)
e ]1' . .jn! 2/1j1! 21”]}’!!

@ Z 202 = DI 2 1(2), — D!
Wy G Un)”
(@5 2 %,
Xm(m) (o)
_@) Z @ =Dt @Zju—D!
]]' ]I+ +]n ] .]1' ]n!

1 . .
J (1) - ().

-

This together with

Ch-Dr 2 -Dt
Ji! Job (27 —=DU
_ @ =Dt )G+ D@ = DY
Al =D Bl +2h -1 2+ 1)
j "O_jn + 1)(2jn - 1)!! <
Jal =1 (2 =2+ 1)~

results in

il .
Z S Ew%“ oo Ewr
TR - ]1 ]1'
@ ) o = GG Dl
= 2 (n= i

(A.3)

Jite =i

Noticing that (a+1)/(b+1) < a/b for all a>b >0,
we have

<n,

(J+n=D! j4+n—1j4+n—-2 n

(n— DYt J Jj—1 1
Vi=1,2,....

O

Substituting this into (A.3) gives the desired result (A.1).

P(l;c(—)k(g‘h of Lemma 1: By (9) we have Wy 1(6) =
[T eAokith=9 Codwy, and hence,

h
T N7 s K
E[W(/c+1)l1(90)W(k+1)h(9())] = / é’AO‘ C()(eAO C())TdS.
0

So, there exists a deterministic orthogonal matrix H),
such that

E[H, W nn(00) W, W(/c+1 (00 H]]

61/1

= <ol (A.4)

Tn
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From the proof of Lemma 12.3 of Chen and Guo (1991),
we know that for an adapted process {a;, F,} with
fo las|>ds < 0o a.s., Vi >0, if {w, F,} is a Brownian
motion, then there is a probability space (Q ]-' P) and
a Brownian motion {,, F .} on it such that

!
/ asdws = W),
0

where b(l) = fo la;|>ds. Thus, when a, is deterministic,
then fo agdws; 1s  with normal distribution. Let
Hy Wi in(6o) = (wi, . ... ,w,)". Then, from (9) it follows
that w; (i=1,..., n) is a linear combination of indepen-
dent random variables with normal distribution, and so,
is with normal distribution. Furthermore, by (A.4) we
see that w; is independent of w; whenever i # j. Hence,
for any given positive integer j, by Lemma A.1 and the
condition that no7 < 1 we have

—T . i
EW e 1yn(00) W e 1)n(80)Y

@) _ @)

= E(W g1, O0) Hj Hy W 1i(60)) < T

This together with (A.2) gives

o (_TIL j
E|:Z( W(k+l)/;g90)¢kl1(9)y | ]__kh}

J=0

_ . .
2 (=W 1y (O0) HI Hypien(0)Y
—E 20: (k+1) ]' h |Fkh
LJ=

- ‘
£ 2 Wiy 100V HY Hypn(0))”
= - kh
/=0 ()
[ 77 2j 2j
<E I W(k+l)lz(90)|.| i ()] Fu
= 2!

si N W a (@) 17
[nm(e)u JET}

)
< Z[nmwmzf o (21.)!}

J=0

I
g I[M]e

= ¢!/ 20O (A.5)

where and whereafter
Fin = o{xo, Wy, t € [0, kh)}. (A.6)
It is obvious that xu, s Win(6o), s, and ¢, (6) (for

any given 6) are F,-measurable.
Thus, by (A.5) we have

| exp|~1/2085,00000) = Wiy O0)00s0)) 51 |

— o~ 1/200,0000) E[e—v_v(i+l,,,<eo>¢/</,(e> ¥ h]

J!

o (_TL J
— o 1126T,0)u06) E[Z( W e+ 1)n(00)Pin(0)) | ]__kh]
=0

< e*%¢[,,(9)¢k/z(9) e%¢kr,,(9)¢kh(9)

=1,

which leads to

Elexp —(1/2){Vi1(0) — Vig1(00)HF i

=E |:exp -5 Z { $1,(0)in(6) + 2 W(,+1)/7(90)¢1h(9)} |F Ah:|

= exp —%{Vk(e) - Vk(Ho)}]

- | B
x Elexp—3 {¢kT/1(9)¢kh(9) + 2W&+1)h(90)¢kh(9)} |-7:kh:|

1
<exp _E{Vk(e) - Vk(90)}:|~

This means that, for each given 60¢€0,
{e=/DVO=Vi@)} - 7,1 is a positive supermartingale,
and thus, converges finitely almost surely, i.c.,

0 < lim e~ /2Vk@—Vi@0)

< 0o, forevery 0 € ® a.s.
k—00

(A.7)

Suppose J(6%) > J(6), then, from (24), (30) and (A.7) we
would have

lim e~ 1/2PuE)=Di(00)} — (). (A.8)

k—o00

Note that ék/, as an estimate of the unknown parameter
6y at time instance f=kh is given by
ékh :arAgminge(,) Di(0) for even k. Then there must
be Di(6kn) < Di(6y) for even k. This together with
the condition that ® is finite and that 6* is a limit
of {ék}, ensures that ékh =0* for infinitely many
even ks. Thus, Di(6*) < Dr(6p) infinitely often, which
contradicts (A.8). Therefore, J(6*) < J(6) holds. O

Proof of Lemma 2: For ¢;,(0) and .(0) given by (31)
and (32), by Theorem 2.8 of Chen and Guo (1991)
we have

—1
Zd),h(ewm(eo)—ow”z“(e)), Ve>0. (A.9)
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By (36) there is a subsequence of the even integers {r;}
such that 6, , = 6*. Similar to the proof of Lemma 3
in Kumar (1983), by (A.9) we have

I’l/(—l

Z OTO)Pu() =0 as. (A.10)
=0

n—o00 ln

By Assumptions A2-A3, for any given 6 € ©, (11) has
a unique positive definite solution P(6). Set

F(O) = Ay — A(9) + BoK(6) — B(O)K(9),
') = FT(0)F(©)

and

k
§O) =1+ 105 =0,iis odd), &(®) =1,

i=1
yi(0) = (xf, D (O)xin A D10y = 0, k is odd),

where and whereafter x A y denotes min{x, y} for any
given real numbers x and y.

Note that by (25) if Q,h =0 fori odd then 9(1 = 6.
Hence, 1(9,;1 =0,iis odd) = 1(9(, ph = 0,1 is odd),
which means &,(6) is measurable with respect to F;_yy.
Since  (xIT(O)xy A 1) — E[(xLTO)xi A DIF-1p] is a
martingale, and

Z{%(Q)

Z (9,/1 =0,iis odd)

i=1
( 1—1(9))‘7#1 A 1)

Elyi(ONF i-1yn}

b

E[(x],T(O)xi A DIF 1)),

by using Theorem 2.8 of Chen and Guo (1991) again
we can see that

k

> (o)

i=1

X 1/2+¢
=0 ((Z 116 = 6,1 is odd)||2> )
i=0

= 0(&(0)'/*), Ve > 0.

— Elyi(OIF i—vn}

Thereby, when limy_, o, &(6) = oo, we have
Jlim & (9)Z{y,<e) ElyiO) Fon} = 0. (A.11)

Denote ag—1y, = /on(i—l)h + Bou([_l)h. Then, we have

ElyiO)F i—1yn]
= E[(x} FT(0)F(O)xi A )1(8; = 6,1 is odd)|Fi_1y]
=1(6,_1 = 6,1 is odd)E[(x], FT(0)F()xi A 1) F i1yl
= 1(0; = 0.1 is odd)E[((ag—1y + Win(00))) FT(0)F(0)
“(@i—1yn + Win(00)) A1) F -]
=16 = 0, i is odd)
x E[ (ag-1 + Win(60)) " H} HyF (O)F(6)
x H Hy (a1 + Win(00)) A 1F 1]
=16, = 0, i is odd)
x E[ (Hyag-1 + HiWa(®0)) HyF" ©)FO)H],
x (Hpai—nn + HiWin(00)) A UF -], (A.12)
where Hj, W;,(6y) satisfying (A.4) has been defined in the

proof of Lemma 1, and is a zero mean random vector
with independent normal distributed components.

By Assumption Al, we have f(f' esCo(eCy)Tds > 0,
which ensures that all the oy, i=1, ---, n, in (A.4) are
positive. Similar to Lemma 5 of Kumar (1983), we can
conclude that when F(O)H] # 0, there exists & > 0
such that

=] T
E[ (Hyag- 1+ i (00)) " HyF"©)FO)H],

x (Hpag-1yn + HyWi(60)) A 1] > e >0,
or equivalently,

El(ai—1yn + Win(00)" FT(O)F(O) (-1
+ Wi(60)) A )] = &1 > 0. (A.13)
This together with (A.12) implies that when F(6) # 0,
Ely{O|F i-p] = e11(6; = 0,1 is odd).

Thus, we have
k
£10)) " EyiO)F -
i=1

k
> 510 e1(6; = 0.1 is odd)

=1
= e (O)E(O) — 1],

and hence, by (A.11) we can conclude that when
F(0) # 0 and ]lim &(0) = o0 a.s.,

k
lim inf&; ! ; 5. A.14
lim inf g (9);%(9)281 >0 as (A.14)
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We are now in a position to show (37). By condition (36),
there is a subsequence 7 such that

Jim (In )€, () > 0. (A.15)

Without loss of generality, in the sequel, we assume that

O = 0" for all positive integer k. Then by (28) and (31)
we get ¢i,(0%) = F(6%)x;, a.s. Hence,

n/\—l

. : -1 T 0¥\ 4. (OF
lim inf(ln ) ;) G5 (0 (67)

> lim inf(In )~

I’lk—l

X Y 1@ = 07,1 is odd)p}(0")pun(E")
i=0

= lim inf(Inng)~"
k—o0

n—1
X Y 10 = 0", iis odd)xj, FT(0")F(0")x
i=0
s
> lim inf(Inng)~" Ca
> lim inf(in ;) ;w )
1y

- [klggo (In )5, (9*)} Jim 1) Y-,

(4.16)

By (A.14) and (A.15) we see that if F(6*) # 0, then there
would be

n/c—l

. . —1 T 0%\ 4. *
Jim inf(in ) ;@h(@ Yo (0F) > 0 a.s.

This contradicts (A.10). Thus, F(#*) =0, or equiva-
lently, (37) holds.
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